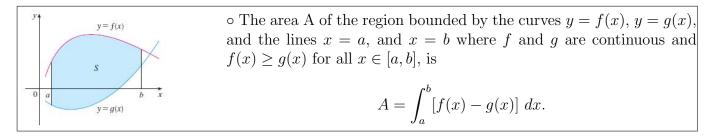
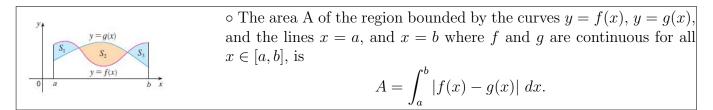
7 Applications of Integration

7.1 Finding Areas



Exercise 1. Sketch the region bounded above by $y = x^2 + 1$, bounded below by y = x and find the area of the region.

Exercise 2. Sketch the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$ and find the area of the region.



Exercise 3. Sketch the region bounded by the curves $y = \sin x$, $y = \cos x$, x = 0, and $x = \frac{\pi}{2}$. Find the area of the region.

Exercise 4. Sketch the region enclosed by the line y = x - 1 and the parabola $y^2 = 2x + 6$. Find the area of the region.

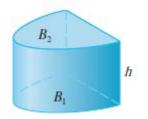
Exercise 5. Sketch the region bounded by the curves $y = \cos x$, $y = \sin 2x$, x = 0, and $x = \frac{\pi}{2}$. Find the area of the region.

Exercise 6. Sketch the region enclosed by the the parabolas $x = 1 - y^2$ and $x = y^2 - 1$. Find the area of the region.

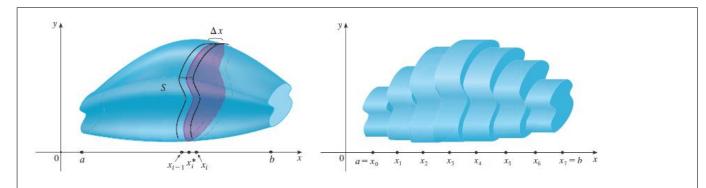
Exercise 7. Find the values of a such that the area of the region bounded by the parabolas $y = x^2 - a^2$ and $y = a^2 - x^2$ is 576.

Exercise 8. Find the number b such that the line y = b divides the region bounded by the curves $y = x^2$ and y = 4 into two regions with equal area.

7.2 Finding Volumes



• A cylinder is bounded by a plane region B_1 , called the *base*, and a congruent region B_2 in a parallel plane. The cylinder consists of all points on line segments that are perpendicular to the base and join B_1 to B_2 . If the area of the base is A and the height of the cylinder (the distance from B_1 to B_2) is h, then the volume of the cylinder is defined as V = Ah.



(*Slab method*) Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S in the plane P_x , through x and perpendicular to the x-axis, is A(x), where A is a continuous function, then the volume of S is

$$V = \lim_{n \to \infty} \sum_{i=1}^{\infty} A(x^*) \delta x = \int_a^b A(x) \, dx.$$

Exercise 9. Show that the volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.

Exercise 10. (**Disk method**) Find the volume of the solid obtained by rotating about the x-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

Exercise 11. Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8, x = 0 and about the y-axis.

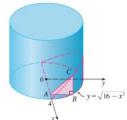
Exercise 12. (*Washer method*) The region R enclosed by the curves y = x and $y = x^2$ is rotated about the x-axis. Find the volume of the resulting solid.

Exercise 13. The region R enclosed by the curves y = x and $y = x^2$ is rotated about the line y = 2. Find the volume of the resulting solid.

Exercise 14. The region R enclosed by the curves y = x and $y = x^2$ is rotated about the line x = -1. Find the volume of the resulting solid.

Exercise 15. Figure shows a solid with a circular base of radius 1. Parallel cross-sections perpendicular to the base are equilateral triangles. Find the volume of the solid.

Exercise 16. A wedge is cut out of a circular cylinder of radius 4 by two planes. One plane is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 30° along a diameter of the cylinder. Find the volume of the wedge.



Exercise 17. Find the volume of the solid obtained by rotating the region bounded by the curves $y = 1 - x^2$, and y = 0 about the x-axis. Sketch the region, the solid, and a typical disk or washer.

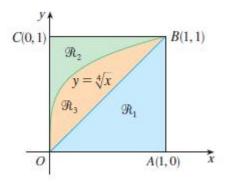
Exercise 18. Find the volume of the solid obtained by rotating the region bounded by the curves $x = 2\sqrt{y}$, x = 0, and y = 9 about the *y*-axis. Sketch the region, the solid, and a typical disk or washer.

Exercise 19. Find the volume of the solid obtained by rotating the region bounded by the curves $x = y^2$, and $y = x^2$ about the line y = 1.

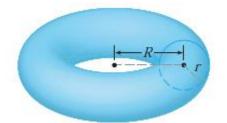
Exercise 20. Find the volume of the solid obtained by rotating the region bounded by the curves $x = y^2$, and $y = x^2$ about the line x = -1.

Exercise 21. Refer to the figure and find the volume generated by rotating the given region about the specified line.

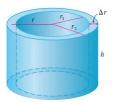
(a) \mathscr{R}_1 about OA.	(e) \mathscr{R}_2 about OA.	(i) \mathscr{R}_3 about OA.
(b) \mathscr{R}_1 about OC.	(f) \mathscr{R}_2 about OC.	(j) \mathscr{R}_3 about OC.
(c) \mathscr{R}_1 about AB.	(g) \mathscr{R}_2 about AB.	(k) \mathscr{R}_3 about AB.
(d) \mathscr{R}_1 about BC.	(h) \mathscr{R}_2 about BC.	(l) \mathscr{R}_3 about BC.



Exercise 22. Find the volume of torus with radii r and R as shown in figure.

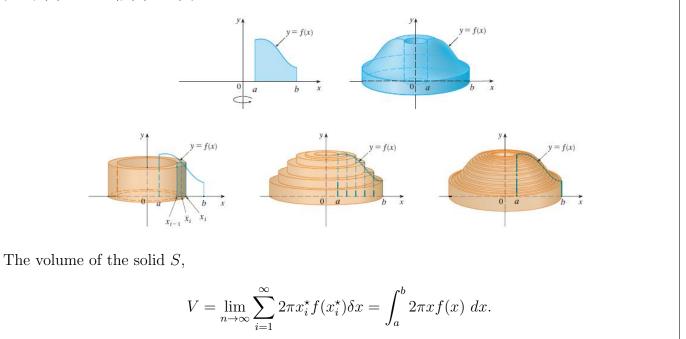


Exercise 23. find the volume of the oblique cylinder shown in the figure.



• Figure shows a cylindrical shell with inner radius r_1 , outer radius r_2 , and height h. Its volume is calculated by subtracting the volume of the inner cylinder from the volume of the outer cylinder: $V = 2\pi r h \delta r$ where $\delta r = r_2 - r_1$ and $r = \frac{1}{2}(r_1 + r_2)$.

(**Shell method**) Let S be the solid obtained by rotating about the y-axis the region bounded by y = f(x) where $(f(x) \ge 0)$ y = 0, x = a, and x = b, where $b > a \ge 0$.



Exercise 24. Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y = 2x^2 - x^3$ and y = 0.

Exercise 25. Find the volume of the solid obtained by rotating about the y-axis the region between y = x and $y = x^2$.

Exercise 26. Use cylindrical shells to find the volume of the solid obtained by rotating about the x-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

Exercise 27. Find the volume of the solid obtained by rotating the region bounded by $y = x - x^2$ and y = 0 about the line x = 2.

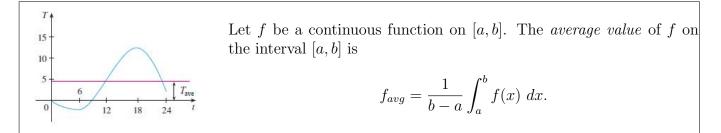
Exercise 28. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves $y = x^2$ and $y = 6x - 2x^2$ about the y-axis.

Exercise 29. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves xy = 1, x = 0, y = 1 and y = 3 about the x-axis.

Exercise 30. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves y = 3 and $y = 4x - x^2$ about the line x = 1.

Exercise 31. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves $x = y^2 + 1$ and x = 2 about the line y = -2.

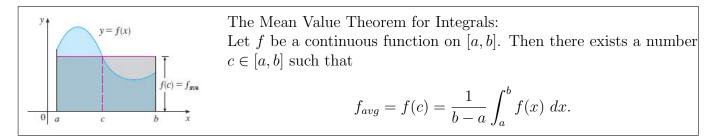
7.3 Mean value of a function



Exercise 32. Find the average value of the function $f(x) = 1 + x^2$ on the interval [-1, 2].

Exercise 33. Find the average value of the function $f(x) = \sin 4x$ on the interval $[-\pi, \pi]$.

Exercise 34. The linear density in a rod $8m \log is \frac{12}{\sqrt{x+1}} \text{Kg/m}$, where x is measured in meters from one end of the rod. Find the average density of the rod.



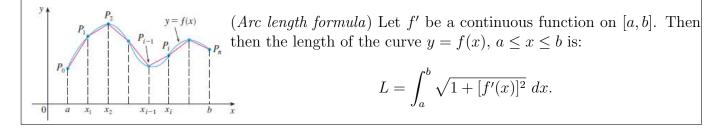
Exercise 35. If f is continuous and $\int_1^3 f(x) dx = 8$ then show that f takes on the value 4 at least once on the interval [1,3].

Let
$$f$$
 be a continuous function on $[a, b]$.
The mean square value of $f = \frac{1}{b-a} \int_a^b [f(x)]^2 dx$.
The root mean square value of $f = \sqrt{\frac{1}{b-a} \int_a^b [f(x)]^2 dx}$.

Exercise 35. Find the root mean square (rms) value of the function $f(x) = x^4$ on the interval [1,2].

Exercise 36. Find the root mean square (rms) value of the function $f(x) = \sin x$ on the interval $[0, 2\pi]$.

7.4 Arc Length



Exercise 37. Find the length of the arc of the semicubical parabola $y^2 = x^3$ between the points (1,1) and (4,8).

Exercise 38. Find the length of the arc of the curve $y = 1 + 6x^{3/2}, 0 \le x \le 1$.

If a curve has the equation x = g(y), $c \le y \le d$ and g'(y) be a continuous function on [c, d]. Then the length of the curve x = g(y), $c \le y \le d$ is:

$$L = \int_{c}^{d} \sqrt{1 + [g'(y)]^2} \, dy.$$

Exercise 39. Find the length of arc given by $x = \frac{2}{3}(y-1)^{3/2}$ where $1 \le y \le 4$.

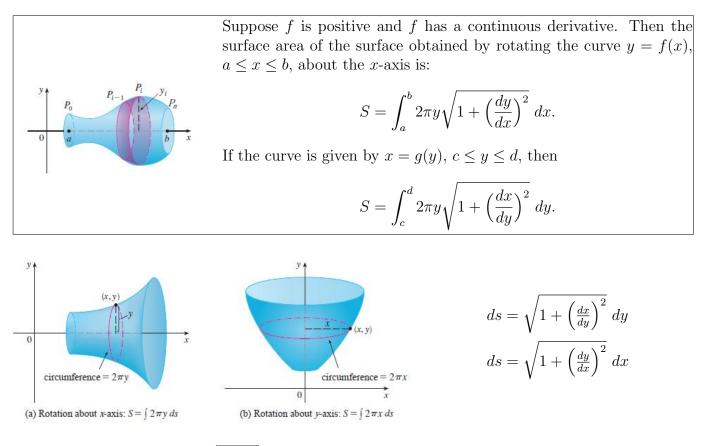
Exercise 40. Find the length of arc given by $x = \frac{1}{3}\sqrt{y}(y-3)$ where $1 \le y \le 9$.

(Arc length function) If a smooth curve \mathscr{C} has the equation y = f(x), $a \leq x \leq b$, let s(x) be the distance along \mathscr{C} from the initial point (a, f(a)) to the point (x, f(x)). Then s(x) is a function, called the arc length function, and :

$$s(x) = \int_{a}^{x} \sqrt{1 + [f'(t)]^2} dt.$$

Exercise 41. Find the arc length function for the curve $y = x^2 - \frac{1}{8} \ln x$ starting at the point (1, 1). Exercise 42. Find the arc length function for the curve $y = 2x^{3/2}$ with starting point (1,2).

7.5 Area of a Surface of Revolution



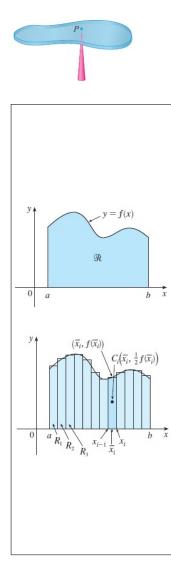
Exercise 43. The curve $y = \sqrt{4 - x^2}$, $-1 \le x \le 1$, is an arc of the circle $x^2 + y^2 = 4$. Find the area of the surface obtained by rotating this arc about the *x*-axis.

Exercise 44. Find the exact area of the surface obtained by rotating the curve $y = x^3$, $0 \le x \le 2$ about the x-axis.

Exercise 45. The arc of the parabola $y = x^2$ from (1,1) to (2,4) is rotated about the y-axis. Find the area of the resulting surface.

Exercise 46. Find the exact area of the surface obtained by rotating the curve $y = 1 - x^2$, $0 \le x \le 1$ about the *y*-axis.

7.7 Moments and Centers of Mass



The point P on which a thin plate of any given shape balances horizontally is called the *center of mass* (or centroid or center of gravity) of the plate.

Consider a flat plate (called a *lamina*) with *uniform density* ρ that occupies a region \mathcal{R} of the plane.

The moment of \mathcal{R} about the y-axis, M_y :

$$M_y = \lim_{n \to \infty} \sum_{n=1}^n \rho \overline{x}_i f(\overline{x}_i) \Delta x = \rho \int_a^b x f(x) \, dx.$$

The moment of \mathcal{R} about the x-axis, M_x :

$$M_{x} = \lim_{n \to \infty} \sum_{n=1}^{n} \rho \frac{1}{2} [f(\overline{x}_{i})]^{2} \Delta x = \rho \int_{a}^{b} \frac{1}{2} [f(x)]^{2} dx.$$

The mass of the plate, m:

$$m = \rho \int_{a}^{b} f(x) \, dx.$$

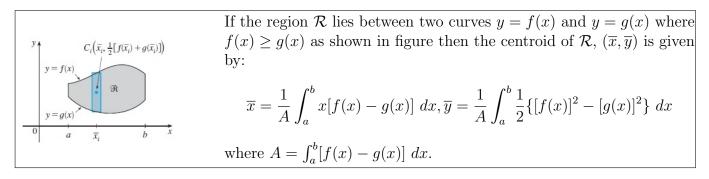
The center of mass of the plate, $(\overline{x}, \overline{y})$:

$$(\overline{x}, \overline{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right).$$

I.e., $\overline{x} = \frac{1}{A} \int_a^b x f(x) \ dx, \overline{y} = \frac{1}{A} \int_a^b \frac{1}{2} [f(x)]^2 \ dx$ where $A = \int_a^b f(x) \ dx$.

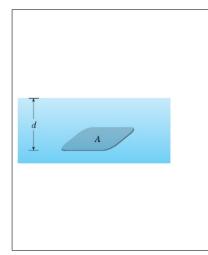
Exercise 47. Find the center of mass of a semicircular plate of radius r.

Exercise 48. Find the centroid of the region bounded by the curves $y = \cos x, y = 0, x = 0$, and $x = \frac{\pi}{2}$.



Exercise 49. Find the centroid of the region bounded by the line y = x, and parabola $y = x^2$. Exercise 50. Find the centroid of the region bounded by the curves $y = 2 - x^2$, and y = x.

7.8 Hydrostatic Pressure, Force, and Work Done



Suppose that a thin horizontal plate with area A square meters is submerged in a fluid of density ρ kilograms per cubic meter at a depth d meters below the surface of the fluid as shown in figure. The force F exerted by the fluid on the plate is:

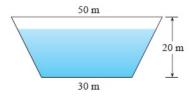
$$F = \rho g A d$$

where is the acceleration due to gravity. The pressure P on the plate is defined to be the force per unit area:

$$P = \rho g d.$$

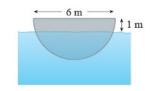
At any point in a liquid the pressure is the same in all directions.

Exercise 51. A dam has the shape of the trapezoid shown in Figure. The height is 20 m and the width is 50 m at the top and 30 m at the bottom. Find the force on the dam due to hydrostatic pressure if the water level is 4 m from the top of the dam.



Exercise 52. Find the hydrostatic force on one end of a cylindrical drum with radius 3 ft if the drum is submerged in water 10 ft deep.

Exercise 53. A vertical plate is partially submerged in water and has the indicated shape. Explain how to approximate the hydrostatic force against one side of the plate by a Riemann sum. Then express the force as an integral and evaluate it.



• If the force is constant the *work done* is defined to be the product of the force and the distance that an object moves: W = Fd.

Exercise 54. When a particle is located a distance xm from the origin, a force of $x^2 + 2x$ Newton acts on it. How much work is done in moving it from x = 1 to x = 3?

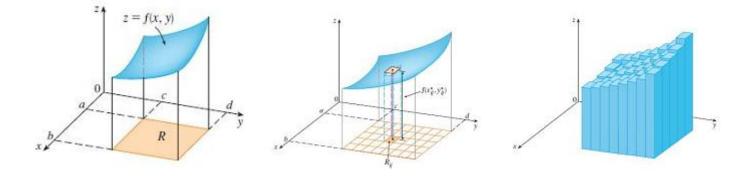
Exercise 55. A force of 40 N is required to hold a spring that has been stretched from its natural length of 10 cm to a length of 15 cm. How much work is done in stretching the spring from 15 cm to 18 cm? (Hooke's Law states that the force required to maintain a spring stretched x units beyond its natural length is proportional to x.)

Exercise 56. A 200-lb cable is 100 ft long and hangs vertically from the top of a tall building. How much work is required to lift the cable to the top of the building?

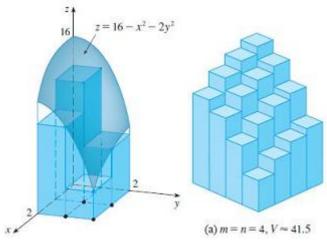
Exercise 57. A tank has the shape of an inverted circular cone with height 10 m and base radius 4 m. It is filled with water to a height of 8 m. Find the work required to empty the tank by pumping all of the water to the top of the tank. (The density of water is 1000 kg/m^3 .)

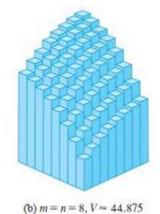
Exercise 58. A chain lying on the ground is 10 m long and its mass is 80 kg. How much work is required to raise one end of the chain to a height of 6 m?

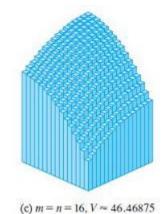
7.9 Double Integrals



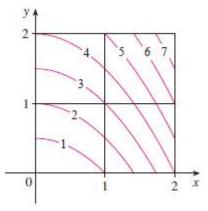
Exercise 59. Estimate the volume of the solid that lies above the square $R = [0, 2] \times [0, 2]$ and below the elliptic paraboloid $z = 16 - x^2 - 2y^2$.







Exercise 60. The figure (contour map) shows level curves (contour curves) of a function f in the square $R = [0, 2] \times [0, 2]$. Use the Midpoint Rule with m = n = 2 to estimate $\int \int_R f(x, y) dA$. How could you improve your estimate? Estimate the average value of f.



Exercise 61. Evaluate the iterated integrals. (a) $\int_0^3 \int_1^2 x^2 y \, dy dx$ (b) $\int_1^2 \int_0^3 x^2 y \, dx dy$