7 Applications of Integration

7.1 Finding Areas

○ The area A of the region bounded by the curves $y=f(x), y=g(x)$,
and the lines $x=a$, and $x=b$ where f and g are continuous and
$f(x) \geq g(x)$ for all $x \in[a, b]$, is

Exercise 1. Sketch the region bounded above by $y=x^{2}+1$, bounded below by $y=x$ and find the area of the region.

Exercise 2. Sketch the region enclosed by the parabolas $y=x^{2}$ and $y=2 x-x^{2}$ and find the area of the region.

Exercise 3. Sketch the region bounded by the curves $y=\sin x, y=\cos x, x=0$, and $x=\frac{\pi}{2}$. Find the area of the region.

Exercise 4. Sketch the region enclosed by the line $y=x-1$ and the parabola $y^{2}=2 x+6$. Find the area of the region.

Exercise 5. Sketch the region bounded by the curves $y=\cos x, y=\sin 2 x, x=0$, and $x=\frac{\pi}{2}$. Find the area of the region.

Exercise 6. Sketch the region enclosed by the the parabolas $x=1-y^{2}$ and $x=y^{2}-1$. Find the area of the region.

Exercise 7. Find the values of a such that the area of the region bounded by the parabolas $y=x^{2}-a^{2}$ and $y=a^{2}-x^{2}$ is 576 .

Exercise 8. Find the number b such that the line $y=b$ divides the region bounded by the curves $y=x^{2}$ and $y=4$ into two regions with equal area.

7.2 Finding Volumes

- A cylinder is bounded by a plane region B_{1}, called the base, and a congruent region B_{2} in a parallel plane. The cylinder consists of all points on line segments that are perpendicular to the base and join B_{1} to B_{2}. If the area of the base is A and the height of the cylinder (the distance from B_{1} to B_{2}) is h, then the volume of the cylinder is defined as $V=A h$.

(Slab method) Let S be a solid that lies between $x=a$ and $x=b$. If the cross-sectional area of S in the plane P_{x}, through x and perpendicular to the x-axis, is $A(x)$, where A is a continuous function, then the volume of S is

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} A\left(x^{\star}\right) \delta x=\int_{a}^{b} A(x) d x
$$

Exercise 9. Show that the volume of a sphere of radius r is $V=\frac{4}{3} \pi r^{3}$.
Exercise 10. (Disk method) Find the volume of the solid obtained by rotating about the x-axis the region under the curve $y=\sqrt{x}$ from 0 to 1 .

Exercise 11. Find the volume of the solid obtained by rotating the region bounded by $y=x^{3}, y=8$, $x=0$ and about the y-axis.

Exercise 12. (Washer method) The region R enclosed by the curves $y=x$ and $y=x^{2}$ is rotated about the x-axis. Find the volume of the resulting solid.

Exercise 13. The region R enclosed by the curves $y=x$ and $y=x^{2}$ is rotated about the line $y=2$. Find the volume of the resulting solid.

Exercise 14. The region R enclosed by the curves $y=x$ and $y=x^{2}$ is rotated about the line $x=-1$. Find the volume of the resulting solid.

Exercise 15. Figure shows a solid with a circular base of radius 1. Parallel cross-sections perpendicular to the base are equilateral triangles. Find the volume of the solid.

Exercise 16. A wedge is cut out of a circular cylinder of radius 4 by two planes. One plane is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 30° along a diameter of the cylinder. Find the volume of the wedge.

Exercise 17. Find the volume of the solid obtained by rotating the region bounded by the curves $y=1-x^{2}$, and $y=0$ about the x-axis. Sketch the region, the solid, and a typical disk or washer.

Exercise 18. Find the volume of the solid obtained by rotating the region bounded by the curves $x=2 \sqrt{y}, x=0$, and $y=9$ about the y-axis. Sketch the region, the solid, and a typical disk or washer.

Exercise 19. Find the volume of the solid obtained by rotating the region bounded by the curves $x=y^{2}$, and $y=x^{2}$ about the line $y=1$.

Exercise 20. Find the volume of the solid obtained by rotating the region bounded by the curves $x=y^{2}$, and $y=x^{2}$ about the line $x=-1$.

Exercise 21. Refer to the figure and find the volume generated by rotating the given region about the specified line.
(a) \mathscr{R}_{1} about OA. (e) \mathscr{R}_{2} about OA. (i) \mathscr{R}_{3} about OA.
(b) \mathscr{R}_{1} about OC. (f) \mathscr{R}_{2} about OC. (j) \mathscr{R}_{3} about OC.
(c) \mathscr{R}_{1} about AB . (g) \mathscr{R}_{2} about AB . (k) \mathscr{R}_{3} about AB .
(d) \mathscr{R}_{1} about BC. (h) \mathscr{R}_{2} about BC. (l) \mathscr{R}_{3} about BC.

Exercise 22. Find the volume of torus with radii r and R as shown in figure.

Exercise 23. find the volume of the oblique cylinder shown in the figure.

- Figure shows a cylindrical shell with inner radius r_{1}, outer radius r_{2}, and height h. Its volume is calculated by subtracting the volume of the inner cylinder from the volume of the outer cylinder: $V=2 \pi r h \delta r$ where $\delta r=r_{2}-r_{1}$ and $r=\frac{1}{2}\left(r_{1}+r_{2}\right)$.
(Shell method) Let S be the solid obtained by rotating about the y-axis the region bounded by $y=f(x)$ where $(f(x) \geq 0) y=0, x=a$, and $x=b$, where $b>a \geq 0$.

The volume of the solid S,

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} 2 \pi x_{i}^{\star} f\left(x_{i}^{\star}\right) \delta x=\int_{a}^{b} 2 \pi x f(x) d x .
$$

Exercise 24. Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$.

Exercise 25. Find the volume of the solid obtained by rotating about the y-axis the region between $y=x$ and $y=x^{2}$.

Exercise 26. Use cylindrical shells to find the volume of the solid obtained by rotating about the x-axis the region under the curve $y=\sqrt{x}$ from 0 to 1 .

Exercise 27. Find the volume of the solid obtained by rotating the region bounded by $y=x-x^{2}$ and $y=0$ about the line $x=2$.

Exercise 28. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves $y=x^{2}$ and $y=6 x-2 x^{2}$ about the y-axis.

Exercise 29. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves $x y=1, x=0, y=1$ and $y=3$ about the x-axis.

Exercise 30. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves $y=3$ and $y=4 x-x^{2}$ about the line $x=1$.

Exercise 31. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves $x=y^{2}+1$ and $x=2$ about the line $y=-2$.

7.3 Mean value of a function

Let f be a continuous function on $[a, b]$. The average value of f on the interval $[a, b]$ is

$$
f_{a v g}=\frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

Exercise 32. Find the average value of the function $f(x)=1+x^{2}$ on the interval $[-1,2]$.
Exercise 33. Find the average value of the function $f(x)=\sin 4 x$ on the interval $[-\pi, \pi]$.
Exercise 34. The linear density in a rod $8 m$ long is $12 / \sqrt{x+1} \mathrm{Kg} / \mathrm{m}$, where x is measured in meters from one end of the rod. Find the average density of the rod.

Exercise 35. If f is continuous and $\int_{1}^{3} f(x) d x=8$ then show that f takes on the value 4 at least once on the interval $[1,3]$.

Let f be a continuous function on $[a, b]$.
The mean square value of $f=\frac{1}{b-a} \int_{a}^{b}[f(x)]^{2} d x$.
The root mean square value of $f=\sqrt{\frac{1}{b-a} \int_{a}^{b}[f(x)]^{2} d x}$.

Exercise 35. Find the root mean square (rms) value of the function $f(x)=x^{4}$ on the interval [1, 2].
Exercise 36. Find the root mean square (rms) value of the function $f(x)=\sin x$ on the interval $[0,2 \pi]$.

7.4 Arc Length

Exercise 37. Find the length of the arc of the semicubical parabola $y^{2}=x^{3}$ between the points $(1,1)$ and $(4,8)$.

Exercise 38. Find the length of the arc of the curve $y=1+6 x^{3 / 2}, 0 \leq x \leq 1$.
If a curve has the equation $x=g(y), c \leq y \leq d$ and $g^{\prime}(y)$ be a continuous function on $[c, d]$. Then the length of the curve $x=g(y), c \leq y \leq d$ is:

$$
L=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

Exercise 39. Find the length of arc given by $x=\frac{2}{3}(y-1)^{3 / 2}$ where $1 \leq y \leq 4$.
Exercise 40. Find the length of arc given by $x=\frac{1}{3} \sqrt{y}(y-3)$ where $1 \leq y \leq 9$.
(Arc length function) If a smooth curve \mathscr{C} has the equation $y=f(x), a \leq x \leq b$, let $s(x)$ be the distance along \mathscr{C} from the initial point $(a, f(a))$ to the point $(x, f(x))$. Then $s(x)$ is a function, called the arc length function, and :

$$
s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t
$$

Exercise 41. Find the arc length function for the curve $y=x^{2}-\frac{1}{8} \ln x$ starting at the point $(1,1)$.
Exercise 42. Find the arc length function for the curve $y=2 x^{3 / 2}$ with starting point $(1,2)$.

7.5 Area of a Surface of Revolution

(a) Rotation about x-axis: $S=\int 2 \pi y d s$

(b) Rotation about y-axis: $S=\int 2 \pi x d s$

Exercise 43. The curve $y=\sqrt{4-x^{2}},-1 \leq x \leq 1$, is an arc of the circle $x^{2}+y^{2}=4$. Find the area of the surface obtained by rotating this arc about the x-axis.

Exercise 44. Find the exact area of the surface obtained by rotating the curve $y=x^{3}, 0 \leq x \leq 2$ about the x-axis.

Exercise 45. The arc of the parabola $y=x^{2}$ from $(1,1)$ to $(2,4)$ is rotated about the y-axis. Find the area of the resulting surface.

Exercise 46. Find the exact area of the surface obtained by rotating the curve $y=1-x^{2}, 0 \leq x \leq 1$ about the y-axis.

7.7 Moments and Centers of Mass

The point P on which a thin plate of any given shape balances horizontally is called the center of mass (or centroid or center of gravity) of the plate.

Exercise 47. Find the center of mass of a semicircular plate of radius r.
Exercise 48. Find the centroid of the region bounded by the curves $y=\cos x, y=0, x=0$, and $x=\frac{\pi}{2}$.

Exercise 49. Find the centroid of the region bounded by the line $y=x$, and parabola $y=x^{2}$.
Exercise 50. Find the centroid of the region bounded by the curves $y=2-x^{2}$, and $y=x$.

7.8 Hydrostatic Pressure, Force, and Work Done

Exercise 51. A dam has the shape of the trapezoid shown in Figure. The height is 20 m and the width is 50 m at the top and 30 m at the bottom. Find the force on the dam due to hydrostatic pressure if the water level is 4 m from the top of the dam.

Exercise 52. Find the hydrostatic force on one end of a cylindrical drum with radius 3 ft if the drum is submerged in water 10 ft deep.

Exercise 53. A vertical plate is partially submerged in water and has the indicated shape. Explain how to approximate the hydrostatic force against one side of the plate by a Riemann sum. Then express the force as an integral and evaluate it.

- If the force is constant the work doneis defined to be the product of the force and the distance that an object moves: $W=F d$.

Exercise 54. When a particle is located a distance $x \mathrm{~m}$ from the origin, a force of $x^{2}+2 x$ Newton acts on it. How much work is done in moving it from $x=1$ to $x=3$?

Exercise 55. A force of 40 N is required to hold a spring that has been stretched from its natural length of 10 cm to a length of 15 cm . How much work is done in stretching the spring from 15 cm to 18 cm ? (Hooke's Law states that the force required to maintain a spring stretched x units beyond its natural length is proportional to x.)

Exercise 56. A $200-\mathrm{lb}$ cable is 100 ft long and hangs vertically from the top of a tall building. How much work is required to lift the cable to the top of the building?

Exercise 57. A tank has the shape of an inverted circular cone with height 10 m and base radius 4 m . It is filled with water to a height of 8 m . Find the work required to empty the tank by pumping all of the water to the top of the tank. (The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.)

Exercise 58. A chain lying on the ground is 10 m long and its mass is 80 kg . How much work is required to raise one end of the chain to a height of 6 m ?

7.9 Double Integrals

Exercise 59. Estimate the volume of the solid that lies above the square $R=[0,2] \times[0,2]$ and below the elliptic paraboloid $z=16-x^{2}-2 y^{2}$.

(a) $m=n=4, V=41.5$

(b) $m=n=8, V=44.875$

(c) $m=n=16, V \approx 46,46875$

Exercise 61. Evaluate the iterated integrals. (a) $\int_{0}^{3} \int_{1}^{2} x^{2} y d y d x$
(b) $\int_{1}^{2} \int_{0}^{3} x^{2} y d x d y$

