1 Sequences and Series

1.1 Sequences

• A sequence is a list of numbers written in a given order, denoted by $\{a_n\}_{n=1}^{\infty}$ or $\{a_n\}$.

Exercise 1. List the first 10 terms in the sequence given by $a_1 = 1$, $a_2 = 1$, $a_n = a_{n-2} + a_{n-1}$ for all $n \ge 3$.

Exercise 2. Find a formula for the *n*th term a_n of the sequence $\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \cdots\right\}$.

Definition: A sequence $\{a_n\}$ converges if $\lim_{n\to\infty} a_n$ exists. Otherwise the sequence diverges.

Exercise 3. Does the harmonic sequence $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\}$ converge?

Exercise 4. Determine $\{(-1)^n\}$ is convergent or divergent sequence.

Theorem: If $\lim_{n \to \infty} |a_n| = 0$ then $\lim_{n \to \infty} a_n = 0$.

Exercise 5. Is the alternating harmonic sequence $\{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \cdots\}$ convergent?

Theorem:	If	lim	f(x)	= L and	f(n)	$a_n,$	$n \in$	$\in \mathbb{N},$	then	\lim	$a_n = L.$
		$x \rightarrow \infty$,		,					$n \rightarrow \infty$	

Exercise 6. For which values of r, the sequence $\{r^n\}$ converges?

Theorem: If $\lim_{n \to \infty} a_n = L$ and f is continuous at L, then $\lim_{n \to \infty} f(a_n) = f(L)$.

Exercise 7. Does the sequence $\{\sin(\frac{\pi}{n})\}$ converge?

Note: The sequence $\{a, a+d, \cdots, a+(n-1)d, \cdots\}$ is known as arithmetic sequence. The sequence $\{a, ar, ar^2 \cdots, ar^{(n-1)}, \cdots\}$ is known as geometric sequence.

Definition: Let $\{a_n\}_{n=1}^{\infty}$ be a given sequence. The sum of terms $a_1 + a_2 + \dots + a_n + \dots$, denoted by $\sum_{n=1}^{\infty} a_n$, is called an *(infinite) series*. Definition: Given a series $\sum_{n=1}^{\infty} a_n$, let S_n denotes the *n*th partial sum $S_n = \sum_{n=1}^{\infty} a_n$. If the sequence $\{S_n\}$ is convergent and $\lim_{n\to\infty} S_n = S$ then we say the series $\sum_{n=1}^{\infty} a_n$ is convergent and call S the sum of the series. If the sequence $\{S_n\}$ is divergent then we say the series $\sum_{n=1}^{\infty} a_n$ is divergent. Exercise 8. Show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

Exercise 9. Show that the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$ is convergent.

Exercise 10. Show that the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ is convergent.

Exercise 11. For what values of r the series $\sum_{n=1}^{\infty} ar^{n-1}$ converges? $(a \neq 0)$

1.3.1 The integral test

Suppose f is continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$. Then,

• If
$$\int_{1}^{\infty} f(x) dx$$
 is convergent then $\sum_{n=1}^{\infty} a_n$ is convergent.
• If $\int_{1}^{\infty} f(x) dx$ is divergent then $\sum_{n=1}^{\infty} a_n$ is divergent.
Exercise 13. Test for convergence: $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$.

Exercise 14. Show that the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$.

1.3.2 The comparison test

Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms.

- If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ also convergent.
- If $\sum b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum a_n$ also divergent.

Exercise 15. Test for convergence: $\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}.$

Exercise 16. Test for convergence:
$$\sum_{k=1}^{\infty} \frac{\ln k}{k}$$
.

1.3.3 Alternating series test

If the alternating series $\sum_{n \to \infty} (-1)^{n-1} b_n$, $(b_n > 0)$ satisfies (i) $b_{n+1} \le b_n$ for all n and (ii) $\lim_{n \to \infty} = 0$ then the series is convergent.

Exercise 17. Test for convergence: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}.$

Exercise 18. Test for convergence: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n^2}{n^3+1}.$

1.3.4 Ratio test

Definition: A series $\sum a_n$ is called **absolutely convergent** if $\sum |a_n|$ is convergent.

Exercise 19. Test for absolute convergence: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}.$

Exercise 20. Test for absolute convergence: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}.$

Definition: A series $\sum a_n$ is called *conditionally convergent* if it is convergent but not absolutely convergent.

Exercise 21. Test for conditional convergence: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$.

Exercise 22. Test for convergence: $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$.

<u>The ratio test</u> Let $\sum a_n$ be given. \circ If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$ then $\sum a_n$ is absolutely convergent. \circ If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ or $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$ then $\sum a_n$ is divergent. \circ If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ then the test is inconclusive.

Exercise 22. Test for absolute convergence: $\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{3^n}.$

Exercise 23. Test for convergence:
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$
.

<u>1.4 Power series</u>

Definition: A **power series** is a series of the form $\sum_{n=0}^{\infty} c_n x^n$ where x is a variable and c_n are constants call the coefficients of the power series. The function $f(x) = \sum_{n=0}^{\infty} c_n x^n$ has domain as the set of all x for which the series converges. The series $\sum_{n=0}^{\infty} c_n (x-a)^n$ is called power series centered at a.

Exercise 24. For which values of x the series $\sum_{n=0}^{\infty} \frac{(x-3)^n}{n}$ converges?

Theorem: For a given power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ there are only 3 possibilities. • The series converges only when x = a. • The series converges for all $x \in \mathbb{R}$. • The series converges for |x-a| < R and diverges for |x-a| > R for some R > 0 known as *radius of convergence*. Note: Interval of convergence depends on the behavior of series at the end points.

Exercise 25. Find the radius of convergence and interval of convergence: $\sum_{n=0}^{n=\infty} \frac{(-3)^n x}{\sqrt{n+1}}.$

Exercise 26. Express $f(x) = \frac{1}{1-x}$ as a power series.

Exercise 27. Express $f(x) = \frac{1}{1+x^2}$ as a power series.

Theorem: Let $f(x) = \sum_{n=0}^{n=\infty} c_n (x-a)^n$ with radius of convergence R > 0. Suppose f is differentiable. Then,

$$f'(x) = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1}$$
 and $\int f(x) \, dx = C + \sum_{n=0}^{\infty} \frac{c_n (x-a)^{n+1}}{n+1}$

within the same radius of convergence R.

Exercise 28. Express $f(x) = \frac{1}{(1-x)^2}$ as a power series.

Exercise 29. Express $f(x) = \tan^{-1} x$ as a power series.

Theorem: If f has a power series expansion at a then $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n, |x-a| < R$ and this is known as **Taylor series**. When a = 0 this is known as **Maclaurin series**.

Exercise 30. Find Maclaurin series of $f(x) = e^x$. What is the radius of convergence?

Exercise 31. Find Maclaurin series of $f(x) = \ln(x+1)$. What is the radius of convergence?

Exercise 32. Find Maclaurin series of $f(x) = \sin x$. What is the radius of convergence?

Exercise 33. Find Taylor series of $f(x) = \cos x$ about $x = \frac{\pi}{2}$. What is the radius of convergence?

Note: Let $k \in \mathbb{R}$ and |x| < 1. Then $(1+x)^k = \sum_{k=0}^{\infty} ({}_kC_n)x^n = 1 + kx + \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^2 + \cdots + kx + \frac{k(k-1)(k-2)}{3!}x^2 + \frac{k(k-1)($