1 Sequences and Series

1.1 Sequences
\circ A sequence is a list of numbers written in a given order, denoted by $\left\{a_{n}\right\}_{n=1}^{\infty}$ or $\left\{a_{n}\right\}$.

Exercise 1. List the first 10 terms in the sequence given by $a_{1}=1, a_{2}=1, a_{n}=a_{n-2}+a_{n-1}$ for all $n \geq 3$.

Exercise 2. Find a formula for the nth term a_{n} of the sequence $\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \cdots\right\}$.

Definition: A sequence $\left\{a_{n}\right\}$ converges if $\lim _{n \rightarrow \infty} a_{n}$ exists. Otherwise the sequence diverges.
Exercise 3. Does the harmonic sequence $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\}$ converge?

Exercise 4. Determine $\left\{(-1)^{n}\right\}$ is convergent or divergent sequence.

Theorem: If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then $\lim _{n \rightarrow \infty} a_{n}=0$.
Exercise 5. Is the alternating harmonic sequence $\left\{1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \cdots\right\}$ convergent?

Theorem: If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}, n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} a_{n}=L$.
Exercise 6. For which values of r, the sequence $\left\{r^{n}\right\}$ converges?

Theorem: If $\lim _{n \rightarrow \infty} a_{n}=L$ and f is continuous at L, then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)$.
Exercise 7. Does the sequence $\left\{\sin \left(\frac{\pi}{n}\right)\right\}$ converge?

Note: The sequence $\{a, a+d, \cdots, a+(n-1) d, \cdots\}$ is known as arithmetic sequence. The sequence $\left\{a, a r, a r^{2} \cdots, a r^{(n-1)}, \cdots\right\}$ is known as geometric sequence.

Definition: Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a given sequence. The sum of terms $a_{1}+a_{2}+\cdots+a_{n}+\cdots$, denoted by $\sum_{n=1}^{\infty} a_{n}$, is called an (infinite) series.
Definition: Given a series $\sum_{n=1}^{\infty} a_{n}$, let S_{n} denotes the nth partial sum $S_{n}=\sum_{n=1}^{\infty} a_{n}$. If the sequence $\left\{S_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} S_{n}=S$ then we say the series $\sum_{n=1}^{\infty} a_{n}$ is convergent and call S the sum of the series. If the sequence $\left\{S_{n}\right\}$ is divergent then we say the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
Exercise 8. Show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

Exercise 9. Show that the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ is convergent.

Exercise 10. Show that the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ is convergent.

Exercise 11. For what values of r the series $\sum_{n=1}^{\infty} a r^{n-1}$ converges? $(a \neq 0)$

Theorem: If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent then $\lim _{n \rightarrow \infty} a_{n}=0$.
Exercise 12. Determine the series $\sum_{n=1}^{\infty} \frac{n^{2}}{5 n^{2}+4}$ converges or diverges.
1.3.1 The integral test

Suppose f is continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then,

- If $\int_{1}^{\infty} f(x) d x$ is convergent then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
- If $\int_{1}^{\infty} f(x) d x$ is divergent then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Exercise 13. Test for convergence: $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$.

Exercise 14. Show that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if $p>1$ and divergent if $p \leq 1$.

1.3.2 The comparison test

Suppose $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.

- If $\sum b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, then $\sum a_{n}$ also convergent.
- If $\sum b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all n, then $\sum a_{n}$ also divergent.

Exercise 15. Test for convergence: $\sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}$.

Exercise 16. Test for convergence: $\sum_{k=1}^{\infty} \frac{\ln k}{k}$.
1.3.3 Alternating series test

If the alternating series $\sum(-1)^{n-1} b_{n},\left(b_{n}>0\right)$ satisfies (i) $b_{n+1} \leq b_{n}$ for all n and (ii) $\lim _{n \rightarrow \infty}=0$ then the series is convergent.

Exercise 17. Test for convergence: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$.

Exercise 18. Test for convergence: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^{2}}{n^{3}+1}$.

1.3.4 Ratio test

Definition: A series $\sum a_{n}$ is called absolutely convergent if $\sum\left|a_{n}\right|$ is convergent.
Exercise 19. Test for absolute convergence: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}$.

Exercise 20. Test for absolute convergence: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$.

Definition: A series $\sum a_{n}$ is called conditionally convergent if it is convergent but not absolutely convergent.

Exercise 21. Test for conditional convergence: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$.

Exercise 22. Test for convergence: $\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}}$.

The ratio test

Let $\sum a_{n}$ be given.

- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$ then $\sum a_{n}$ is absolutely convergent.
- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$ then $\sum a_{n}$ is divergent.
- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$ then the test is inconclusive.

Exercise 22. Test for absolute convergence: $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{3}}{3^{n}}$.

Exercise 23. Test for convergence: $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$.

Definition: A power series is a series of the form $\sum_{n=0}^{\infty} c_{n} x^{n}$ where x is a variable and c_{n} are constants call the coefficients of the power series. The function $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ has domain as the set of all x for which the series converges. The series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is called power series centered at a.
Exercise 24. For which values of x the series $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n}$ converges?

Theorem: For a given power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are only 3 possibilities.

- The series converges only when $x=a$.
- The series converges for all $x \in \mathbb{R}$.
- The series converges for $|x-a|<R$ and diverges for $|x-a|>R$ for some $R>0$ known as radius of convergence.

Note: Interval of convergence depends on the behavior of series at the end points.
Exercise 25. Find the radius of convergence and interval of convergence: $\sum_{n=0}^{n=\infty} \frac{(-3)^{n} x}{\sqrt{n+1}}$.

Exercise 26. Express $f(x)=\frac{1}{1-x}$ as a power series.

Exercise 27. Express $f(x)=\frac{1}{1+x^{2}}$ as a power series.

Theorem: Let $f(x)=\sum_{n=0}^{n=\infty} c_{n}(x-a)^{n}$ with radius of convergence $R>0$. Suppose f is differentiable. Then,

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \text { and } \int f(x) d x=C+\sum_{n=0}^{\infty} \frac{c_{n}(x-a)^{n+1}}{n+1}
$$

within the same radius of convergence R.
Exercise 28. Express $f(x)=\frac{1}{(1-x)^{2}}$ as a power series.

Exercise 29. Express $f(x)=\tan ^{-1} x$ as a power series.

Theorem: If f has a power series expansion at a then $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n},|x-a|<R$ and this is known as Taylor series. When $a=0$ this is known as Maclaurin series.
Exercise 30. Find Maclaurin series of $f(x)=e^{x}$. What is the radius of convergence?

Exercise 31. Find Maclaurin series of $f(x)=\ln (x+1)$. What is the radius of convergence?

Exercise 32. Find Maclaurin series of $f(x)=\sin x$. What is the radius of convergence?

Exercise 33. Find Taylor series of $f(x)=\cos x$ about $x=\frac{\pi}{2}$. What is the radius of convergence?

Note: Let $k \in \mathbb{R}$ and $|x|<1$. Then $(1+x)^{k}=\sum\left({ }_{k} C_{n}\right) x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{2} \cdots+$ is known as binomial series.

