
Parametric Equations and
Polar Coordinates10

So far we have described plane curves by giving as a function of or as a function 

of or by giving a relation between and that defines implicitly as a function of

. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both and are given in terms of a third 

variable called a parameter . Other curves, such as the cardioid, have their most

convenient description when we use a new coordinate system, called the polar coordinate system.

y x �y � f �x�� x
y �x � t�y�� x y y x

� f �x, y� � 0�
x y

t �x � f �t�, y � t�t��

635

© Dean Ketelsen

The Hale-Bopp comet, with its blue ion tail and white dust tail, appeared in
the sky in March 1997. In Section 10.6 you will see how polar coordinates
provide a convenient equation for the path of this comet.
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636 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to
describe C by an equation of the form because C fails the Vertical Line Test. But
the x- and y-coordinates of the particle are functions of time and so we can write
and . Such a pair of equations is often a convenient way of describing a curve and
gives rise to the following definition.

Suppose that and are both given as functions of a third variable (called a param -
eter) by the equations

(called parametric equations). Each value of determines a point , which we can 
plot in a coordinate plane. As varies, the point varies and traces out a
curve , which we call a parametric curve. The parameter t does not necessarily represent
time and, in fact, we could use a letter other than t for the parameter. But in many 
applications of parametric curves, t does denote time and therefore we can interpret

as the position of a particle at time t.

Sketch and identify the curve defined by the parametric equations

SOLUTION Each value of gives a point on the curve, as shown in the table. For instance,
if , then , and so the corresponding point is . In Figure 2 we plot
the points determined by several values of the parameter and we join them to pro-
duce a curve.

A particle whose position is given by the parametric equations moves along the curve
in the direction of the arrows as increases. Notice that the consecutive points marked
on the curve appear at equal time intervals but not at equal distances. That is because the
particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a parab ola.
This can be confirmed by eliminating the parameter as follows. We obtain
from the second equation and substitute into the first equation. This gives

and so the curve represented by the given parametric equations is the parabola
.

y � f �x�
x � f �t�

y � t�t�

x y t

x � f �t� y � t�t�

t �x, y�
t �x, y� � � f �t�, t�t��

C

�x, y� � � f �t�, t�t��

x � t2 � 2t y � t � 1

t
t � 0 x � 0 y � 1 �0, 1�

�x, y�

FIGURE 2 
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x

8

t

t

t t � y � 1

x � t 2 � 2t � �y � 1�2 � 2�y � 1� � y 2 � 4y � 3

EXAMPLE 1

x � y 2 � 4y � 3

10.1 Curves Defined by Parametric Equations

C

0

(x, y)={f(t), g(t)}

FIGURE 1

y

x

t x y

�2 8 �1
�1 3 0

0 0 1
1 �1 2
2 0 3
3 3 4
4 8 5

This equation in and describes where the
particle has been, but it doesn’t tell us when
the particle was at a particular point. The para-
metric equations have an advantage––they tell
us when the particle was at a point. They also
indicate the direction of the motion.

yx
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 637

No restriction was placed on the parameter in Example 1, so we assumed that t could
be any real number. But sometimes we restrict t to lie in a finite interval. For instance, the
parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point and
ends at the point . The arrowhead indicates the direction in which the curve is traced
as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm this
impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this example
the parameter can be interpreted as the angle (in radians) shown in Figure 4. As
increases from 0 to , the point moves once around the circle in
the counterclockwise direction starting from the point .

What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves twice
around the circle in the clockwise direction as indicated in Figure 5.

Examples 2 and 3 show that different sets of parametric equations can represent the same
curve. Thus we distinguish between a curve, which is a set of points, and a parametric curve,
in which the points are traced in a particular way.

Find parametric equations for the circle with center and radius .

SOLUTION If we take the equations of the unit circle in Example 2 and multiply the
expressions for and by , we get , . You can verify that these
equations represent a circle with radius and center the origin traced counterclockwise.
We now shift units in the -direction and units in the -direction and obtain para-

t

0 � t � 4y � t � 1x � t 2 � 2t

�0, 1�
�8, 5�

t

a � t � by � t�t�x � f �t�

� f �a�, t�a�� � f �b�, t�b��

EXAMPLE 2v

0 � t � 2�y � sin tx � cos t

t.

x 2 � y 2 � cos2t � sin2t � 1

x 2 � y 2 � 1�x, y�
tt

�x, y� � �cos t, sin t�2�
�1, 0�

EXAMPLE 3

0 � t � 2�y � cos 2tx � sin 2t

x 2 � y 2 � sin2 2t � cos2 2t � 1

tx 2 � y 2 � 1
�0, 1��x, y� � �sin 2t, cos 2t�2�

r�h, k�EXAMPLE 4

y � r sin tx � r cos tryx
r

ykxh

FIGURE 3 
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π
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0
t

t=0

(1, 0)

(cos t, sin t )

t=2π
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0
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metric equations of the circle (Figure 6) with center and radius :

Sketch the curve with parametric equations , .

SOLUTION Observe that and so the point moves on the parabola
. But note also that, since , we have , so the para-

metric equations represent only the part of the parabola for which . Since
is periodic, the point moves back and forth infinitely often

along the parabola from to . (See Figure 7.)

Graphing Devices
Most graphing calculators and computer graphing programs can be used to graph curves
defined by parametric equations. In fact, it’s instructive to watch a parametric curve being
drawn by a graphing calculator because the points are plotted in order as the corresponding
parameter values increase.

r�h, k�

0 � t � 2�y � k � r sin tx � h � r cos t

FIGURE 6
x=h+r cos t, y=k+r sin t 0

(h, k)

r

x

y

y � sin2tx � sin tEXAMPLE 5v

�x, y�y � �sin t�2 � x 2

�1 � x � 1�1 � sin t � 1y � x 2

�1 � x � 1
�x, y� � �sin t, sin2t�sin t

�1, 1���1, 1�

y=sin 2tx=cos t     y=sin 2t

x=
cos t

FIGURE 8
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x

638 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

FIGURE 7 

0

(1, 1)(_1, 1)

x

y

Module 10.1A gives an ani  ma tion of the
relationship between motion along a parametric
curve , and motion along the
graphs of and as functions of . Clicking on
TRIG gives you the family of parametric curves

If you choose and click 
on animate, you will see how the graphs of

and relate to the circle in
Example 2. If you choose ,

, you will see graphs as in Figure 8. By
clicking on animate or moving the -slider to 
the right, you can see from the color coding how
motion along the graphs of and

corresponds to motion along the para-
metric curve, which is called a Lissajous figure.

TEC

t

t

y � sin 2t

x � cos t

d � 2

a � b � c � 1

y � sin tx � cos t

a � b � c � d � 1

y � c sin dtx � a cos bt

tf

y � t�t�x � f �t�

97909_10_ch10_p635-645.qk_97909_10_ch10_p635-645  9/22/10  9:54 AM  Page 638



SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 639

Use a graphing device to graph the curve .

SOLUTION If we let the parameter be , then we have the equations

Using these parametric equations to graph the curve, we obtain Figure 9. It would be
possible to solve the given equation for y as four functions of x and
graph them individually, but the parametric equations provide a much easier method.

In general, if we need to graph an equation of the form , we can use the para-
metric equations

Notice also that curves with equations (the ones we are most familiar with—graphs
of functions) can also be regarded as curves with parametric equations

Graphing devices are particularly useful for sketching complicated curves. For instance,
the curves shown in Figures 10, 11, and 12 would be virtually impossible to produce by hand.

One of the most important uses of parametric curves is in computer-aided design (CAD).
In the Laboratory Project after Section 10.2 we will investigate special parametric curves,
called Bézier curves, that are used extensively in manufacturing, especially in the auto-
motive industry. These curves are also employed in specifying the shapes of letters and
other symbols in laser printers.

The Cycloid

The curve traced out by a point on the circumference of a circle as the
circle rolls along a straight line is called a cycloid (see Figure 13). If the circle has 
radius and rolls along the -axis and if one position of is the origin, find parametric
equations for the cycloid.

x � y 4 � 3y 2EXAMPLE 6

t � y

y � tx � t 4 � 3t 2

�x � y 4 � 3y 2 �

x � t�y�

y � tx � t�t�

y � f �x�

y � f �t�x � t

1.5

_1.5

_1.5 1.5

1

_1

_2 2

1.8

_1.8

_1.8 1.8

FIGURE 11
x=sin t-sin 2.3t  

y=cos t

FIGURE 10
x=sin t+   

y=cos t+

1
2

cos 5t+1
4

sin 13t
1
2

sin 5t+1
4

cos 13t

FIGURE 12
x=sin t+   

y=cos t+

1
2

sin 5t+1
4

cos 2.3t
1
2

cos 5t+1
4

sin 2.3t

PEXAMPLE 7

Pxr

FIGURE 13 P

P
P

3

_3

_3 3

FIGURE 9

An animation in Module 10.1B shows
how the cycloid is formed as the circle moves.
TEC
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640 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

SOLUTION We choose as parameter the angle of rotation of the circle when is
at the origin). Suppose the circle has rotated through radians. Because the circle has
been in contact with the line, we see from Figure 14 that the distance it has rolled from
the origin is

Therefore the center of the circle is . Let the coordinates of be . Then
from Figure 14 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 14, which illustrates the

case where , it can be seen that these equations are still valid for other
values of (see Exercise 39).

Although it is possible to eliminate the parameter from Equations 1, the resulting
Cartesian equation in and is very complicated and not as convenient to work with as
the parametric equations.

One of the first people to study the cycloid was Galileo, who proposed that bridges be
built in the shape of cycloids and who tried to find the area under one arch of a cycloid. Later
this curve arose in connection with the brachistochrone problem: Find the curve along
which a particle will slide in the shortest time (under the influence of gravity) from a point

to a lower point not directly beneath . The Swiss mathematician John Bernoulli, who
posed this problem in 1696, showed that among all possible curves that join to , as in
Figure 15, the particle will take the least time sliding from to if the curve is part of an
inverted arch of a cycloid.

The Dutch physicist Huygens had already shown that the cycloid is also the solution to
the tautochrone problem; that is, no matter where a particle is placed on an inverted
cycloid, it takes the same time to slide to the bottom (see Figure 16). Huygens proposed that
pendulum clocks (which he invented) should swing in cycloidal arcs because then the pen-
dulum would take the same time to make a complete oscillation whether it swings through
a wide or a small arc.

Families of Parametric Curves

Investigate the family of curves with parametric equations

What do these curves have in common? How does the shape change as increases?

SOLUTION We use a graphing device to produce the graphs for the cases , ,
, , , , , and shown in Figure 17. Notice that all of these curves (except

the case ) have two branches, and both branches approach the vertical asymptote
as approaches from the left or right.

� OT � � arc PT � r�

�x, y�PC�r�, r�

x � � OT � � � PQ � � r� � r sin � � r�� � sin ��

y � � TC � � � QC � � r � r cos � � r �1 � cos ��

� � �y � r �1 � cos ��x � r �� � sin ��1

0 � � � 2�
0 � � � ��2

�
�

yx

ABA
BA

BA

P

EXAMPLE 8v

y � a tan t � sin tx � a � cos t

a

P�� � 0�
�

�1a � �2
210.50�0.2�0.5

a � 0
axx � a

FIGURE 14

xO

y

T

C(r¨, r )
r ¨

x
y

r¨

P Q

FIGURE 15

A

B

cycloid

P

P
P

P

P 

FIGURE 16
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 641

1–4 Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the curve is
traced as increases.

1. ,  ,  

2. ,  ,  

3. ,  ,  

4. ,  ,  

5–10
(a) Sketch the curve by using the parametric equations to plot

points. Indicate with an arrow the direction in which the curve
is traced as t increases.

(b) Eliminate the parameter to find a Cartesian equation of the
curve.

5. ,  

6. ,  ,  

7. ,  ,  

8. ,  ,  

t

x � t 2 � t y � t 2 � t �2 � t � 2

x � t 2 y � t 3 � 4t �3 � t � 3

x � cos2t y � 1 � sin t 0 � t � ��2

x � e�t � t y � e t � t �2 � t � 2

x � 3 � 4t y � 2 � 3t

x � 1 � 2t y � 1
2t � 1 �2 � t � 4

x � 1 � t 2 y � t � 2 �2 � t � 2

�2 � t � 2y � t 3 � 1x � t � 1

9. ,  

10. ,  

11–18
(a) Eliminate the parameter to find a Cartesian equation of the

curve.
(b) Sketch the curve and indicate with an arrow the direction in

which the curve is traced as the parameter increases.

11. ,  ,  

12. ,  ,  

13. ,  ,  

14. ,  

15. ,  

16. ,  

17. ,  

18. ,  ,  

x � t 2 y � t 3

x � st y � 1 � t

x � sin 1
2� y � cos 12� �� � � � �

x � 1
2 cos � y � 2 sin � 0 � � � �

x � sin t y � csc t 0 � t � ��2

x � et � 1 y � e 2 t

x � e 2 t y � t � 1

y � st � 1y � st � 1

x � sinh t y � cosh t

x � tan2� y � sec � ���2 � � � ��2

10.1 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

When , both branches are smooth; but when reaches , the right branch
acquires a sharp point, called a cusp. For between and 0 the cusp turns into a loop,
which becomes larger as approaches 0. When , both branches come together and
form a circle (see Example 2). For between 0 and 1, the left branch has a loop, which
shrinks to become a cusp when . For , the branches become smooth again,
and as increases further, they become less curved. Notice that the curves with posi-
tive are reflections about the -axis of the corresponding curves with negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar
Nicomedes. He called them conchoids because the shape of their outer branches 
resembles that of a conch shell or mussel shell.

a=_2 a=_1 a=_0.5 a=_0.2

a=2a=1a=0.5a=0

a � �1 a �1
a �1

a a � 0
a

a � 1 a � 1
a a

y a

FIGURE 17 Members of the family
x=a+cos t, y=a tan t+sin t,
all graphed in the viewing rectangle
�_4, 4� by �_4, 4�
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642 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

19–22 Describe the motion of a particle with position as 
varies in the given interval.

19. ,  ,  

20. ,  ,  

21. ,  ,  

22. ,  ,  

23. Suppose a curve is given by the parametric equations ,
, where the range of is and the range of is

. What can you say about the curve?

24. Match the graphs of the parametric equations and
in (a)–(d) with the parametric curves labeled I–IV.

Give reasons for your choices.

�x, y�
t

x � 3 � 2 cos t y � 1 � 2 sin t ��2 � t � 3��2

x � 2 sin t y � 4 � cos t 0 � t � 3��2

x � 5 sin t y � 2 cos t �� � t � 5�

x � sin t y � cos2t �2� � t � 2�

x � f �t�
y � t�t� f �1, 4� t

�2, 3�

x � f �t�
y � t�t�

t

x

2

1

1

t

y

1

1

y

x

2

2

(a) I

(b) II
x

t

2

1 t

2

1

y y

x

2

2

(c) III

t

2

2

yx

t

2

2

(d) IV

t

2

2

yx

t

2

2

y

x

2

2

1

y

x

1

2

25–27 Use the graphs of and to sketch the para-
metric curve , . Indicate with arrows the direction
in which the curve is traced as increases.

25.

26.

27.

28. Match the parametric equations with the graphs labeled I-VI.
Give reasons for your choices. (Do not use a graphing device.)
(a) ,  

(b) ,  

(c) ,  

(d) ,  

(e) ,  

(f ) ,  

y � t�t�x � f �t�
y � t�t�x � f �t�

t

t

x

_1

1 t

y

1

1

t

x

1

1 t

y

1

1

t

y

1

1t

x

1

1

y � t 2x � t 4 � t � 1

y � stx � t 2 � 2t

y � sin�t � sin 2t�x � sin 2t

y � sin 2tx � cos 5t

y � t 2 � cos 3tx � t � sin 4t

y �
cos 2t

4 � t 2x �
sin 2t

4 � t 2

x

y

x

y

x

y

x

y

x

y

x

y

I II III

IV V VI
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 643

; 29. Graph the curve .

; 30. Graph the curves and and find
their points of intersection correct to one decimal place.

31. (a) Show that the parametric equations

where , describe the line segment that joins the
points and .

(b) Find parametric equations to represent the line segment
from to .

; 32. Use a graphing device and the result of Exercise 31(a) to
draw the triangle with vertices , , and .

33. Find parametric equations for the path of a particle that
moves along the circle in the manner
described.
(a) Once around clockwise, starting at 
(b) Three times around counterclockwise, starting at 
(c) Halfway around counterclockwise, starting at 

; 34. (a) Find parametric equations for the ellipse
. [Hint: Modify the equations of 

the circle in Example 2.]
(b) Use these parametric equations to graph the ellipse when

and b � 1, 2, 4, and 8.
(c) How does the shape of the ellipse change as b varies?

; 35–36 Use a graphing calculator or computer to reproduce the
picture.

35. 36.

37–38 Compare the curves represented by the parametric
equations. How do they differ?

37. (a) ,  (b) ,  
(c) ,  

38. (a) ,  (b) ,  
(c) ,  

39. Derive Equations 1 for the case .

40. Let be a point at a distance from the center of a circle of
radius . The curve traced out by as the circle rolls along a
straight line is called a trochoid. (Think of the motion of a
point on a spoke of a bicycle wheel.) The cycloid is the spe-
cial case of a trochoid with . Using the same parameter

as for the cycloid and, assuming the line is the -axis and 

x � y � 2 sin �y

x � y 3 � 4yy � x 3 � 4x

y � y1 � �y2 � y1�tx � x1 � �x 2 � x1�t

0 � t � 1
P2�x 2, y2 �P1�x1, y1�

�3, �1���2, 7�

C �1, 5�B �4, 2�A �1, 1�

x 2 � �y � 1�2 � 4

�2, 1�
�2, 1�

�0, 3�

x 2�a 2 � y 2�b 2 � 1

a � 3

0

y

x

2

3 8

4

0

2

y

x2

y � t 4x � t 6y � t 2x � t 3

y � e�2 tx � e�3 t

y � sec2tx � cos ty � t �2x � t
y � e�2 tx � e t

��2 � � � �

dP
Pr

d � r
x�

when is at one of its lowest points, show that para-
metric equations of the trochoid are

Sketch the trochoid for the cases and .

41. If and are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point
in the figure, using the angle as the parameter. Then elimi-
nate the param eter and identify the curve.

42. If and are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point
in the figure, using the angle as the parameter. The line
segment is tangent to the larger circle.

43. A curve, called a witch of Maria Agnesi, consists of all pos-
sible positions of the point in the figure. Show that para-
metric equations for this curve can be written as 

Sketch the curve.

P� � 0

y � r � d cos �x � r� � d sin �

d � rd � r

ba
P

�

O

y

x
¨

a
b P

ba
P

�
AB

O x

y

¨

a
b

A

B

P

P

y � 2a sin2�x � 2a cot �

O x

a

A P

y=2a

¨

y
C
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L A B O R AT O R Y  P R O J E C T ; RUNNING CIRCLES AROUND CIRCLES

In this project we investigate families of curves, called hypocycloids and epicycloids, that are
generated by the motion of a point on a circle that rolls inside or outside another circle.

1. A hypocycloid is a curve traced out by a fixed point P on a circle C of radius b as C rolls on the
inside of a circle with center O and radius a. Show that if the initial position of P is and
the parameter is chosen as in the figure, then parametric equations of the hypocycloid are

�a, 0�
�

y � �a � b� sin � � b sin� a � b

b
�	x � �a � b� cos � � b cos�a � b

b
�	

; Graphing calculator or computer required

644 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

44. (a) Find parametric equations for the set of all points as
shown in the figure such that . (This curve
is called the cissoid of Diocles after the Greek scholar
Diocles, who introduced the cissoid as a graphical
method for constructing the edge of a cube whose volume
is twice that of a given cube.)

(b) Use the geometric description of the curve to draw a
rough sketch of the curve by hand. Check your work by
using the parametric equations to graph the curve.

; 45. Suppose that the position of one particle at time is given by

and the position of a second particle is given by

(a) Graph the paths of both particles. How many points of
intersection are there?

(b) Are any of these points of intersection collision points? 
In other words, are the particles ever at the same place at
the same time? If so, find the collision points.

(c) Describe what happens if the path of the second particle
is given by

46. If a projectile is fired with an initial velocity of meters per
second at an angle above the horizontal and air resistance
is assumed to be negligible, then its position after seconds 

P

� OP � � � AB �

xO

y

A

P
x=2a

B

a

t

0 � t � 2�y1 � 2 cos tx1 � 3 sin t

0 � t � 2�y2 � 1 � sin tx 2 � �3 � cos t

x 2 � 3 � cos t y2 � 1 � sin t 0 � t � 2�

v0

	
t

is given by the parametric equations

where is the acceleration due to gravity ( m�s ).
(a) If a gun is fired with and m�s, when 

will the bullet hit the ground? How far from the gun will
it hit the ground? What is the maximum height reached 
by the bullet?

; (b) Use a graphing device to check your answers to part (a).
Then graph the path of the projectile for several other 
values of the angle to see where it hits the ground.
Summarize your findings.

(c) Show that the path is parabolic by eliminating the 
parameter.

; 47. Investigate the family of curves defined by the parametric
equations , . How does the shape change 
as increases? Illustrate by graphing several members of the
family.

; 48. The swallowtail catastrophe curves are defined by the para-
metric equations , . Graph
several of these curves. What features do the curves have in
common? How do they change when increases?

; 49. Graph several members of the family of curves with
parametric equations , , where

. How does the shape change as increases? For what
values of does the curve have a loop?

; 50. Graph several members of the family of curves
, where is a positive

integer. What features do the curves have in common? What
happens as increases?

; 51. The curves with equations , are
called Lissajous figures. Investigate how these curves vary
when , , and vary. (Take to be a positive integer.)

; 52. Investigate the family of curves defined by the parametric
equations , , where . Start 
by letting be a positive integer and see what happens to the
shape as increases. Then explore some of the possibilities
that occur when is a fraction.

	 � 30
 v0 � 500

	

x � t 2 y � t 3 � ct
c

x � 2ct � 4t 3 y � �ct 2 � 3t 4

c

x � t � a cos t y � t � a sin t
a � 0 a

a

x � sin t � sin nt ny � cos t � cos nt

n

x � a sin nt y � b cos t

a b n n

x � cos t y � sin t � sin ct c � 0
c

c
c

29.8t

y � �v0 sin 	�t �
1
2 tt 2x � �v0 cos 	�t

xO

y

a

C

Pb
(a, 0)¨

A
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES 645

2. Use a graphing device (or the interactive graphic in TEC Module 10.1B) to draw the graphs of
hypocycloids with a positive integer and . How does the value of affect the graph?
Show that if we take , then the parametric equations of the hypocycloid reduce to

This curve is called a hypocycloid of four cusps, or an astroid.

3. Now try b � 1 and , a fraction where n and d have no common factor. First let n � 1
and try to determine graphically the effect of the denominator d on the shape of the graph. Then
let n vary while keeping d constant. What happens when ?

4. What happens if and is irrational? Experiment with an irrational number like or
. Take larger and larger values for and speculate on what would happen if we were to

graph the hypocycloid for all real values of .

5. If the circle rolls on the outside of the fixed circle, the curve traced out by is called an
epicycloid. Find parametric equations for the epicycloid.

6. Investigate the possible shapes for epicycloids. Use methods similar to Problems 2–4.

x � 4 cos3� y � 4 sin3�

a � n�d

n � d � 1

b � 1 a s2
e � 2 �

�

C P

a b � 1
a � 4

a
Look at Module 10.1B to see how 

hypocycloids and epi cycloids are formed by 
the motion of rolling circles.

TEC

Having seen how to represent curves by parametric equations, we now apply the methods
of calculus to these parametric curves. In particular, we solve problems involving tangents,
area, arc length, and surface area.

Tangents
Suppose and are differentiable functions and we want to find the tangent line at a point
on the curve where is also a differentiable function of . Then the Chain Rule gives

If , we can solve for :

Equation 1 (which you can remember by thinking of canceling the ’s) enables us 
to find the slope of the tangent to a parametric curve without having to eliminate 
the parameter . We see from that the curve has a horizontal tangent when
(provided that ) and it has a vertical tangent when (provided that

). This information is useful for sketching parametric curves.
As we know from Chapter 4, it is also useful to consider . This can be found by

replacing y by dy�dx in Equation 1:

f t

y x

dy

dt
�

dy

dx
�

dx

dt

dx�dt � 0 dy�dx

1
dy

dx
�

dy

dt

dx

dt

if  
dx

dt
� 0

dt
dy�dx

t dy�dt � 0
dx�dt � 0 dx�dt � 0

dy�dt � 0

1

d 2y�dx 2

d 2y

dx 2 �
d

dx � dy

dx	 �

d

dt � dy

dx	
dx

dt

10.2 Calculus with Parametric Curves

If we think of the curve as being traced out by
a moving particle, then and are
the vertical and horizontal velocities of the par-
ticle and Formula 1 says that the slope of the
tangent is the ratio of these velocities. 

dx�dtdy�dt

| Note that
d 2y

dx2 �

d 2y

dt 2

d 2x

dt 2
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646 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

A curve is defined by the parametric equations , 
(a) Show that has two tangents at the point (3, 0) and find their equations.
(b) Find the points on where the tangent is horizontal or vertical.
(c) Determine where the curve is concave upward or downward.
(d) Sketch the curve.

SOLUTION
(a) Notice that when or . Therefore the
point on arises from two values of the parameter, and . This
indicates that crosses itself at . Since

the slope of the tangent when is , so the equa-
tions of the tangents at are

(b) has a horizontal tangent when , that is, when and .
Since , this happens when , that is, . The corresponding
points on are and (1, 2). has a vertical tangent when , that is,

.  (Note that there.) The corresponding point on is (0, 0).

(c) To determine concavity we calculate the second derivative:

Thus the curve is concave upward when and concave downward when .

(d) Using the information from parts (b) and (c), we sketch in Figure 1.

(a) Find the tangent to the cycloid , at the point
where .  (See Example 7 in Section 10.1.)
(b) At what points is the tangent horizontal? When is it vertical?

SOLUTION
(a) The slope of the tangent line is

When , we have

and

C x � t 2 y � t 3 � 3t.
C

C

y � t 3 � 3t � t�t 2 � 3� � 0 t � 0 t � �s3
�3, 0� C t � s3 t � �s3

C �3, 0�

dy

dx
�

dy�dt

dx�dt
�

3t 2 � 3

2t
�

3

2
 �t �

1

t �
t � �s3 dy�dx � �6�(2s3 ) � �s3

�3, 0�

y � s3 �x � 3� and y � �s3 �x � 3�

C dy�dx � 0 dy�dt � 0 dx�dt � 0
dy�dt � 3t 2 � 3 t 2 � 1 t � �1

C �1, �2� C dx�dt � 2t � 0
t � 0 dy�dt � 0 C

d2y

dx 2 �

d

dt � dy

dx�
dx

dt

�

3

2
 �1 �

1

t 2�
2t

�
3�t 2 � 1�

4t 3

t � 0 t � 0

C

x � r �� � sin �� y � r �1 � cos ��
� � ��3

dy

dx
�

dy�d�

dx�d�
�

r sin �

r �1 � cos ��
�

sin �

1 � cos �

EXAMPLE 1

v EXAMPLE 2

� � ��3

x � r��

3
� sin 

�

3 � � r��

3
�

s3

2 � y � r�1 � cos 
�

3 � �
r

2

dy

dx
�

sin���3�
1 � cos���3�

�
s3�2

1 �
1
2

� s3

0

y

x

(3, 0)

(1, _2)

(1, 2)

t=1

t=_1

y=œ„3(x-3)

y=_ œ„3(x-3)

FIGURE 1 
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES 647

Therefore the slope of the tangent is and its equation is

The tangent is sketched in Figure 2.

(b) The tangent is horizontal when , which occurs when and
, that is, , an integer. The corresponding point on the

cycloid is .
When , both and are 0. It appears from the graph that there 

are vertical tangents at those points. We can verify this by using l’Hospital’s Rule as
follows:

A similar computation shows that as , so indeed there are verti-
cal tangents when , that is, when .

Areas
We know that the area under a curve from to is , where

. If the curve is traced out once by the parametric equations and ,
, then we can calculate an area formula by using the Sub stitution Rule for 

Definite Integrals as follows:

Find the area under one arch of the cycloid

(See Figure 3.)

SOLUTION One arch of the cycloid is given by . Using the Substitution Rule
with and , we have

s3

y �
r

2
� s3 �x �

r�

3
�

rs3

2 � or s3 x � y � r� �

s3
� 2�

FIGURE 2 0

y

x2πr 4πr

(πr, 2r)(_πr, 2r) (3πr, 2r) (5πr, 2r)

π
3¨=

dy�dx � 0 sin � � 0
1 � cos � � 0 � � �2n � 1�� n

��2n � 1��r, 2r�
� � 2n� dx�d� dy�d�

lim
� l2n��

dy

dx
� lim

� l2n��

sin �

1 � cos �
� lim

� l2n��

cos �

sin �
� �

dy�dx l �� � l 2n��

� � 2n� x � 2n�r

a b A � x
b
a F�x� dx

F�x� � 0 x � f �t� y � t�t�
� 	 t 	 


A � y
b

a
y dx � y




�
t�t� f ��t� dt �or y

�



t�t� f ��t� dt�

x � r�� � sin �� y � r�1 � cos ��

0 	 � 	 2�
y � r�1 � cos �� dx � r�1 � cos � � d�

A � y
2�r

0
y dx � y

2�

0
r�1 � cos �� r�1 � cos �� d�

� r 2
y

2�

0
�1 � cos ��2 d� � r 2

y
2�

0
�1 � 2 cos � � cos2�� d�

� r 2
y

2�

0
[1 � 2 cos � �

1
2 �1 � cos 2��] d�

� r 2[ 3
2 � � 2 sin � �

1
4 sin 2�]0

2�

v EXAMPLE 3

� r 2( 3
2 � 2�) � 3�r 2

y � F�x�

The limits of integration for are found 
as usual with the Substitution Rule. When

, is either or . When , is
the remaining value.


 tx � b�tx � a

t

The result of Example 3 says that the area
under one arch of the cycloid is three times the
area of the rolling circle that generates the
cycloid (see Example 7 in Section 10.1). Galileo
guessed this result but it was first proved by
the French mathematician Roberval and the
Italian mathematician Torricelli.

FIGURE 3 

0

y

x2πr
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648 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Arc Length
We already know how to find the length of a curve given in the form ,

. Formula 8.1.3 says that if is continuous, then

Suppose that can also be described by the parametric equations and ,
, where . This means that is traversed once, from left to

right, as increases from to and , . Putting Formula 1 into Formula
2 and using the Substitution Rule, we obtain

Since , we have

Even if can’t be expressed in the form , Formula 3 is still valid but we obtain
it by polygonal approximations. We divide the parameter interval into n subintervals
of equal width . If , , , . . . , are the endpoints of these subintervals, then
and are the coordinates of points that lie on and the polygon with ver-
tices , , . . . , approximates . (See Figure 4.)

As in Section 8.1, we define the length of to be the limit of the lengths of these
approximating polygons as :

The Mean Value Theorem, when applied to on the interval , gives a number in
such that

If we let and , this equation becomes

Similarly, when applied to , the Mean Value Theorem gives a number in such
that

Therefore

and so

C y � F�x�
a � x � b F�

L � y
b

a
	1 � � dy

dx�2 

dx

C x � f �t� y � t�t�
� � t �  dx�dt � f ��t� � 0 C

t �  f ��� � a f �� � b

L � y
b

a
	1 � � dy

dx�2 

dx � y


�
	1 � � dy�dt

dx�dt�2 dx

dt
dt

dx�dt � 0

L � y


�
	�dx

dt �2

� �dy

dt �2 

dt

C y � F�x�

�, �

�t t0 t1 t2 tn xi � f �ti �
yi � t�ti� Pi�xi, yi � C
P0 P1 Pn C

L C
n l 	

L � lim
nl 	

�
n

i�1
 Pi�1Pi 

f 
ti�1, ti � ti*
�ti�1, ti �

f �ti � � f �ti�1� � f ��ti*��ti � ti�1�

�xi � xi � xi�1 �yi � yi � yi�1

�xi � f ��ti*� �t

2

3

ti** �ti�1, ti �

�yi � t��ti**� �t

 Pi�1Pi  � s��xi�2 � ��yi �2 � s
 f ��ti*��t�2 � 
t��ti
**��t�2 

� s
 f ��ti*��2 � 
t��ti
**��2 �t

t

L � lim
n l 	

�
n

i�1
s
 f ��ti*��2 � 
t��ti

**��2 �t4

L

0

y

x

P¸

P¡

P™ Pi _1

Pi

Pn

C

FIGURE 4 
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES 649

The sum in resembles a Riemann sum for the function but it is not
exactly a Riemann sum because in general. Nevertheless, if and are contin-
uous, it can be shown that the limit in is the same as if and were equal, namely,

Thus, using Leibniz notation, we have the following result, which has the same form as For-
mula 3.

Theorem If a curve is described by the parametric equations ,
, , where and are continuous on and is traversed

exactly once as increases from to , then the length of is

Notice that the formula in Theorem 5 is consistent with the general formulas
and of Section 8.1.

If we use the representation of the unit circle given in Example 2 in Sec-
tion 10.1,

then and , so Theorem 5 gives

as expected. If, on the other hand, we use the representation given in Example 3 in Sec-
tion 10.1,

then , , and the integral in Theorem 5 gives

| Notice that the integral gives twice the arc length of the circle because as increases
from 0 to , the point traverses the circle twice. In general, when find-
ing the length of a curve from a parametric representation, we have to be careful to
ensure that is traversed only once as increases from to .

Find the length of one arch of the cycloid ,

SOLUTION From Example 3 we see that one arch is described by the parameter interval
. Since

s
 f ��t��2 � 
t��t��2 

ti* � ti** f � t�
ti* ti**

L � y


�
s
 f ��t��2 � 
t��t��2 dt

C x � f �t�
y � t�t� � � t �  f � t� 
�, � C

t �  C

L � y


�
	� dx

dt �2

� � dy

dt �2 

dt

L � x ds
�ds�2 � �dx�2 � �dy�2

x � cos t y � sin t 0 � t � 2�

dx�dt � �sin t dy�dt � cos t

L � y
2�

0
	�dx

dt �2

� �dy

dt �2 

dt � y
2�

0
ssin2t � cos2t dt � y

2�

0
 dt � 2�

x � sin 2t y � cos 2t 0 � t � 2�

dx�dt � 2 cos 2t dy�dt � �2 sin 2t

y
2�

0
	� dx

dt �2

� � dy

dt �2 

dt � y
2�

0
s4 cos2 2t � 4 sin2 2t dt � y

2�

0
2 dt � 4�

t
2� �sin 2t, cos 2t�

C
C t � 

5

4

4

EXAMPLE 4

x � r �� � sin ��
y � r�1 � cos ��.

0 � � � 2�

v EXAMPLE 5

dy

d�
� r sin �and

dx

d�
� r�1 � cos ��
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650 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

we have

To evaluate this integral we use the identity with , which
gives . Since , we have and so

. Therefore

and so

Surface Area
In the same way as for arc length, we can adapt Formula 8.2.5 to obtain a formula for
surface area. If the curve given by the parametric equations , , ,
is rotated about the -axis, where , are continuous and , then the area of the
resulting surface is given by

The general symbolic formulas and (Formulas 8.2.7 and 8.2.8)
are still valid, but for parametric curves we use

Show that the surface area of a sphere of radius is .

SOLUTION The sphere is obtained by rotating the semicircle

about the -axis. Therefore, from Formula 6, we get

L � y
2�

0
	�dx

d��2

� � dy

d��2 

d�

� y
2�

0
sr 2�1 � 2 cos � � cos2� � sin2�� d�

sin2x � 1
2 �1 � cos 2x� � � 2x

1 � cos � � 2 sin2���2� 0 � � � 2� 0 � ��2 � �
sin���2� 
 0

s2�1 � cos �� � s4 sin2���2� � 2  sin���2�  � 2 sin���2�

L � 2r y
2�

0
sin���2� d� � 2r 
�2 cos���2�]0

2�

� 2r 
2 � 2� � 8r

� � t � y � t�t�x � f �t�
t�t� 
 0t�f �x

S � y


�
2�y	�dx

dt �2

� � dy

dt �2 

dt

S � x 2�x dsS � x 2�y ds

ds � 	�dx

dt �2

� �dy

dt �2 

dt

4�r 2r

0 � t � �y � r sin tx � r cos t

x

S � y
�

0
2�r sin t s��r sin t�2 � �r cos t�2 dt

� 2� y
�

0
r sin t � r dt� 2� y

�

0
r sin t sr 2�sin2t � cos2t� dt

� 2�r 2��cos t�]0

�

� 4�r 2� 2�r 2
y

�

0
sin t dt

6

EXAMPLE 6

� y
2�

0
sr 2�1 � cos ��2 � r 2 sin2� d�

� r y
2�

0
s2�1 � cos �� d�

The result of Example 5 says that the length of
one arch of a cycloid is eight times the radius of
the gener ating circle (see Figure 5). This was first
proved in 1658 by Sir Christopher Wren, who
later became the architect of St. Paul’s Cathedral
in London.

FIGURE 5

0

y

x2πr

r

L=8r
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES 651

1–2 Find .

1. ,  2. ,  

3–6 Find an equation of the tangent to the curve at the point 
corresponding to the given value of the parameter.

3. ,  ;  

4. ,  ;  

5. ,  ;  

6. ,  ;  

7–8 Find an equation of the tangent to the curve at the given
point by two methods: (a) without eliminating the parameter and
(b) by first eliminating the parameter.

7. ,  ;  

8. ,  ;  

; 9–10 Find an equation of the tangent(s) to the curve at the given
point. Then graph the curve and the tangent(s).

9. ,  ;  

10. ,  ;  

11–16 Find and . For which values of is the
curve concave upward?

11. ,  12. ,  

13. ,  14. ,  

15. ,  ,  

16. ,  ,  

17–20 Find the points on the curve where the tangent is horizon-
tal or vertical. If you have a graphing device, graph the curve to
check your work.

17. ,  

18. ,  

19. ,  

20. ,  

; 21. Use a graph to estimate the coordinates of the rightmost point
on the curve , . Then use calculus to find the
exact coordinates.

; 22. Use a graph to estimate the coordinates of the lowest point
and the leftmost point on the curve , .
Then find the exact coordinates.

dy�dx

x � t sin t y � t 2 � t x � 1�t y � st e�t

x � 1 � 4t � t 2 y � 2 � t 3 t � 1

x � t � t�1 y � 1 � t 2 t � 1

x � t cos t y � t sin t t � �

x � sin3� y � cos3� � � ��6

x � 1 � ln t y � t 2 � 2 �1, 3�

x � 1 � st y � et2

�2, e�

x � 6 sin t y � t 2 � t �0, 0�

x � cos t � cos 2t y � sin t � sin 2t ��1, 1�

dy�dx d 2 y�dx 2 t

x � t 2 � 1 y � t 2 � t x � t 3 � 1 y � t 2 � t

x � e t y � te� t x � t 2 � 1 y � e t � 1

x � 2 sin t y � 3 cos t 0 � t � 2�

x � cos 2 t y � cos t 0 � t � �

x � t 3 � 3t y � t 2 � 3

x � t 3 � 3t y � t 3 � 3t 2

x � cos � y � cos 3�

x � e sin � y � e cos �

x � t � t 6 y � e t

x � t 4 � 2t y � t � t 4

; 23–24 Graph the curve in a viewing rectangle that displays all
the important aspects of the curve.

23. ,  

24. ,  

25. Show that the curve , has two
tangents at and find their equations. Sketch the curve.

; 26. Graph the curve , to
discover where it crosses itself. Then find equations of both
tangents at that point.

27. (a) Find the slope of the tangent line to the trochoid
, in terms of . (See

Exercise 40 in Section 10.1.)
(b) Show that if , then the trochoid does not have a 

vertical tangent.

28. (a) Find the slope of the tangent to the astroid ,
in terms of . (Astroids are explored in the

Laboratory Project on page 644.)
(b) At what points is the tangent horizontal or vertical?
(c) At what points does the tangent have slope 1 or ?

29. At what points on the curve , does
the tangent line have slope ?

30. Find equations of the tangents to the curve ,
that pass through the point .

31. Use the parametric equations of an ellipse, ,
, , to find the area that it encloses.

32. Find the area enclosed by the curve , and
the .

33. Find the area enclosed by the and the curve 
, .

34. Find the area of the region enclosed by the astroid
, . (Astroids are explored in the Labo-

ratory Project on page 644.)

35. Find the area under one arch of the trochoid of Exercise 40 in
Section 10.1 for the case .

x � t 4 � 2t 3 � 2t 2 y � t 3 � t

x � t 4 � 4t 3 � 8t 2 y � 2t 2 � t

x � cos t y � sin t cos t
�0, 0�

x � cos t � 2 cos 2t y � sin t � 2 sin 2t

x � r� � d sin � y � r � d cos � �

d � r

x � a cos3�
y � a sin3� �

�1

x � 2t 3 y � 1 � 4t � t 2

1

x � 3t 2 � 1
y � 2t 3 � 1 �4, 3�

x � a cos �
y � b sin � 0 � � � 2�

x � t 2 � 2t y � st
y-axis

x-axis
x � 1 � e t y � t � t 2

x � a cos3� y � a sin3�

y

x0 a_a

_a

a

d � r

10.2 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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652 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

36. Let be the region enclosed by the loop of the curve in
Example 1.
(a) Find the area of .
(b) If is rotated about the -axis, find the volume of the

resulting solid.
(c) Find the centroid of .

37–40 Set up an integral that represents the length of the curve.
Then use your calculator to find the length correct to four
decimal places.

37. ,  ,  

38. ,  ,  

39. ,  ,  

40. ,  ,  

41–44 Find the exact length of the curve.

41. ,  ,  

42. ,  ,  

43. ,  ,  

44. ,  ,  

; 45–46 Graph the curve and find its length.

45. ,  ,  

46. ,  ,  

; 47. Graph the curve , and find its
length correct to four decimal places.

48. Find the length of the loop of the curve ,
.

49. Use Simpson’s Rule with to estimate the length of the
curve , , .

50. In Exercise 43 in Section 10.1 you were asked to derive the
parametric equations , for the
curve called the witch of Maria Agnesi. Use Simpson’s Rule
with to estimate the length of the arc of this curve
given by .

51–52 Find the distance traveled by a particle with position
as varies in the given time interval. Compare with the length of
the curve.

51. ,  ,  

52. ,  ,  

53. Show that the total length of the ellipse ,
, , is

�
� x

�

x � t � e�t y � t � e�t 0 � t � 2

x � t 2 � t y � t 4 1 � t � 4

x � t � 2 sin t y � 1 � 2 cos t 0 � t � 4�

x � t � st y � t � st 0 � t � 1

�

0 � t � 1y � 4 � 2t 3x � 1 � 3t 2

0 � t � 3y � 5 � 2tx � et � e�t

0 � t � 1y � t cos tx � t sin t

0 � t � �y � 3 sin t � sin 3tx � 3 cos t � cos 3t

0 � t � �y � e t sin tx � e t cos t

��4 � t � 3��4y � sin tx � cos t � ln(tan 12 t)

x � sin t � sin 1.5t y � cos t

x � 3t � t 3

y � 3t 2

n � 6
�6 � t � 6y � t � e tx � t � e t

y � 2a sin2�x � 2a cot �

n � 4
��4 � � � ��2

�x, y�
t

0 � t � 3�y � cos2tx � sin2t

0 � t � 4�y � cos tx � cos2t

x � a sin �
a � b � 0y � b cos �

L � 4a y
��2

0
s1 � e 2 sin2� d�

where is the eccentricity of the ellipse , where
.

54. Find the total length of the astroid , ,
where 

55. (a) Graph the epitrochoid with equations

What parameter interval gives the complete curve?
(b) Use your CAS to find the approximate length of this

curve.

56. A curve called Cornu’s spiral is defined by the parametric
equations

where and are the Fresnel functions that were intro duced
in Chapter 5.
(a) Graph this curve. What happens as and as 

?
(b) Find the length of Cornu’s spiral from the origin to the

point with parameter value .

57–60 Set up an integral that represents the area of the surface
obtained by rotating the given curve about the -axis. Then use
your calculator to find the surface area correct to four decimal
places.

57. ,  ,  

58. ,  ,  

59. ,  ,  

60. ,  ,  

61–63 Find the exact area of the surface obtained by rotating the
given curve about the -axis.

61. ,  ,  

62. ,  ,  

63. ,  ,  

; 64. Graph the curve

If this curve is rotated about the -axis, find the area of the
resulting surface. (Use your graph to help find the correct 
parameter interval.)

65–66 Find the surface area generated by rotating the given curve
about the -axis.

65. ,  ,  

(e � c�ae
c � sa 2 � b 2 )

y � a sin3�x � a cos3�
a � 0.

CAS

x � 11 cos t � 4 cos�11t�2�

y � 11 sin t � 4 sin�11t�2�

CAS

x � C�t� � y
t

0
cos��u 2�2� du

y � S�t� � y
t

0
sin��u 2�2� du

SC

t l 	
t l �	

t

x

0 � t � ��2y � t cos tx � t sin t

0 � t � ��2y � sin 2tx � sin t

0 � t � 1y � �t 2 � 1�e tx � 1 � te t

0 � t � 1y � t � t 4x � t 2 � t 3

x

0 � t � 1y � t 2x � t 3

0 � t � 1y � 3t 2x � 3t � t 3

0 � � � ��2y � a sin3�x � a cos3�

y � 2 sin � � sin 2�x � 2 cos � � cos 2�

x

y

0 � t � 5y � 2t 3x � 3t 2
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LABORATORY PROJECT BÉZIER CURVES 653

66. ,  ,  

67. If is continuous and for , show that the
parametric curve , , , can be put in
the form . [Hint: Show that exists.]

68. Use Formula 2 to derive Formula 7 from Formula 8.2.5 for the
case in which the curve can be represented in the form

, .

69. The curvature at a point of a curve is defined as

where is the angle of inclination of the tangent line at , 
as shown in the figure. Thus the curvature is the absolute value
of the rate of change of with respect to arc length. It can be
regarded as a measure of the rate of change of direction of the
curve at and will be studied in greater detail in Chapter 13.
(a) For a parametric curve , , derive the 

formula

where the dots indicate derivatives with respect to , so
. [Hint: Use and Formula 2 to

find . Then use the Chain Rule to find .]
(b) By regarding a curve as the parametric curve

, , with parameter , show that the formula
in part (a) becomes

0 � t � 1y � 4e t�2x � e t � t

a � t � bf ��t� � 0f �
a � t � by � t�t�x � f �t�
f �1y � F�x�

a � x � by � F�x�

P

� � � d�

ds �
P�

�

P
y � y�t�x � x�t�

� �  x�y�� � x��y� 

x� 2 � y� 2 �3�2

t
� � tan�1�dy�dx�x� � dx�dt

d��dsd��dt
y � f �x�

xy � f �x�x � x

� �  d 2 y�dx 2 

1 � �dy�dx�2 �3�2

0 x

y

P

˙

70. (a) Use the formula in Exercise 69(b) to find the curvature of
the parabola at the point .

(b) At what point does this parabola have maximum curvature?

71. Use the formula in Exercise 69(a) to find the curvature of the
cycloid , at the top of one of its
arches.

72. (a) Show that the curvature at each point of a straight line 
is .

(b) Show that the curvature at each point of a circle of 
radius is .

73. A string is wound around a circle and then unwound while
being held taut. The curve traced by the point at the end of
the string is called the involute of the circle. If the circle has
radius and center and the initial position of is , and
if the parameter is chosen as in the figure, show that
parametric equations of the involute are

74. A cow is tied to a silo with radius by a rope just long enough
to reach the opposite side of the silo. Find the area available for
grazing by the cow.

r O P �r, 0�
�

x � r �cos � � � sin �� y � r �sin � � � cos ��

xO

y

r

¨ P

T

r

�1, 1�y � x 2

y � 1 � cos �x � � � sin �

� � 0

� � 1�rr

P

L A B O R AT O R Y  P R O J E C T ; BÉZIER CURVES

Bézier curves are used in computer-aided design and are named after the French mathema-
tician Pierre Bézier (1910–1999), who worked in the automotive industry. A cubic Bézier curve 
is determined by four control points, and , and is 
defined by the parametric equations

P0�x0, y0 �, P1�x1, y1�, P2�x2, y2 �, P3�x3, y3 �

x � x0�1 � t�3 � 3x1t�1 � t�2 � 3x2t 2�1 � t� � x3t 3

y � y0�1 � t�3 � 3y1t�1 � t�2 � 3y2t 2�1 � t� � y3t 3

; Graphing calculator or computer required
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654 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

where . Notice that when we have and when we have
, so the curve starts at and ends at .

1. Graph the Bézier curve with control points , , , and 
Then, on the same screen, graph the line segments , , and . (Exercise 31 in 
Section 10.1 shows how to do this.) Notice that the middle control points and don’t lie
on the curve; the curve starts at , heads toward and without reaching them, and ends 
at .

2. From the graph in Problem 1, it appears that the tangent at passes through and the 
tangent at passes through . Prove it.

3. Try to produce a Bézier curve with a loop by changing the second control point in 
Problem 1.

4. Some laser printers use Bézier curves to represent letters and other symbols. Experiment 
with control points until you find a Bézier curve that gives a reasonable representation of the 
letter C.

5. More complicated shapes can be represented by piecing together two or more Bézier curves.
Suppose the first Bézier curve has control points and the second one has con-
trol points . If we want these two pieces to join together smoothly, then the
tangents at should match and so the points , , and all have to lie on this common
tangent line. Using this principle, find control points for a pair of Bézier curves that repre-
sent the letter S.

0 � t � 1 t � 0 �x, y� � �x0, y0 � t � 1
P0 P3

P0�4, 1� P1�28, 48� P2�50, 42� P3�40, 5�.
P0P1 P1P2 P2P3

P1 P2

P0 P1 P2

P3

P0 P1

P3 P2

P0, P1, P2, P3

P3, P4, P5, P6

P3 P2 P3 P4

�x, y� � �x3, y3�

A coordinate system represents a point in the plane by an ordered pair of numbers called
coordinates. Usually we use Cartesian coordinates, which are directed distances from two
perpendicular axes. Here we describe a coordinate system introduced by Newton, called
the polar coordinate system, which is more convenient for many purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled . Then
we draw a ray (half-line) starting at called the polar axis. This axis is usually drawn hor-
izontally to the right and corresponds to the positive -axis in Cartesian coordinates.

If is any other point in the plane, let be the distance from to and let be the angle
(usually measured in radians) between the polar axis and the line as in Figure 1. Then
the point is represented by the ordered pair and , are called polar coordinates
of . We use the convention that an angle is positive if measured in the counterclockwise
direction from the polar axis and negative in the clockwise direction. If , then
and we agree that represents the pole for any value of .

We extend the meaning of polar coordinates to the case in which is negative by
agreeing that, as in Figure 2, the points and lie on the same line through and
at the same distance from , but on opposite sides of . If , the point lies in
the same quadrant as ; if , it lies in the quadrant on the opposite side of the pole.
Notice that represents the same point as .

Plot the points whose polar coordinates are given.
(a) (b) (c) (d)

O
O

x
P r O P �

OP
P �r, �� r �

P
P � O r � 0

�0, �� �
�r, �� r

��r, �� �r, �� O

 r  O O r � 0 �r, ��
� r � 0

��r, �� �r, � � ��

EXAMPLE 1
��3, 3��4��2, �2��3��2, 3���1, 5��4�

10.3 Polar Coordinates

(_r, ¨)

O

¨

(r, ¨ )

¨+π

FIGURE 2 

x
O

¨

r

polar axis

P(r, ̈ )

FIGURE 1 
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SECTION 10.3 POLAR COORDINATES 655

SOLUTION The points are plotted in Figure 3. In part (d) the point is located
three units from the pole in the fourth quadrant because the angle is in the second
quadrant and is negative.

In the Cartesian coordinate system every point has only one representation, but in the
polar coordinate system each point has many representations. For instance, the point

in Example 1(a) could be written as or or . (See
Figure 4.)

In fact, since a complete counterclockwise rotation is given by an angle 2 , the point rep-
resented by polar coordinates is also represented by

where is any integer.
The connection between polar and Cartesian coordinates can be seen from Figure 5, in

which the pole corresponds to the origin and the polar axis coincides with the positive 
-axis. If the point has Cartesian coordinates and polar coordinates , then, from

the figure, we have

and so

Although Equations 1 were deduced from Figure 5, which illustrates the case where
and , these equations are valid for all values of and (See the gen-

eral definition of and in Appendix D.)
Equations 1 allow us to find the Cartesian coordinates of a point when the polar coordi-

nates are known. To find and when and are known, we use the equations

r � �3

O

”_3,       ’3π
4

3π
4

(2, 3π) O

3π

”1,       ’
5π
4

5π
4

O

FIGURE 3 

O

”2, _      ’2π
3

2π
3_

3��4

�1, 5��4� �1, �3��4� �1, 13��4� ��1, ��4�

O

13π
4

”1,        ’13π
4

O

_ 3π
4

”1, _      ’3π
4

O

”1,       ’5π
4

5π
4

FIGURE 4

O

”_1,     ’
π
4

π
4

�
�r, ��

�r, � � 2n�� and ��r, � � �2n � 1���

n

x P �x, y� �r, ��

cos � �
x

r
sin � �

y

r

1 x � r cos � y � r sin �

r � 0 0 � � � ��2 r �.
sin � cos �

r � x y

��3, 3��4�

O

y

x

¨

x

y
r

P (r, ̈ )=P(x, y)

FIGURE 5
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656 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

which can be deduced from Equations 1 or simply read from Figure 5.

Convert the point from polar to Cartesian coordinates.

SOLUTION Since and , Equations 1 give

Therefore the point is in Cartesian coordinates.

Represent the point with Cartesian coordinates in terms of polar
coordinates.

SOLUTION If we choose to be positive, then Equations 2 give

Since the point lies in the fourth quadrant, we can choose or
. Thus one possible answer is ; another is .

NOTE Equations 2 do not uniquely determine when and are given because, as
increases through the interval , each value of occurs twice. Therefore, in
converting from Cartesian to polar coordinates, it’s not good enough just to find and
that satisfy Equations 2. As in Example 3, we must choose so that the point lies in
the correct quadrant.

Polar Curves
The graph of a polar equation , or more generally , consists of all
points that have at least one polar representation whose coordinates satisfy the 
equation.

What curve is represented by the polar equation ?

SOLUTION The curve consists of all points with . Since represents the dis-
tance from the point to the pole, the curve represents the circle with center and
radius . In general, the equation represents a circle with center and radius .
(See Figure 6.)

�2, ��3�

r � 2 � � ��3

x � r cos � � 2 cos 
�

3
� 2 �

1

2
� 1

y � r sin � � 2 sin  
�

3
� 2 �

s3

2
� s3

(1, s3 )

�1, �1�

r

r � sx 2 � y 2 � s12 � ��1�2 � s2

tan � �
y

x
� �1

�1, �1� � � ���4
� � 7��4 (s2 , ���4) �s2 , 7��4�

� x y �
0 � � � 2� tan �

r �
� �r, ��

F�r, �� � 0
P �r, ��

r � 2

�r, �� r � 2 r
r � 2 O

2 r � a O � a �

EXAMPLE 2

EXAMPLE 3

v EXAMPLE 4

2 r 2 � x 2 � y 2 tan � �
y

x

r � f ���

FIGURE 6

x

r=
1
2

r=1

r=2

r=4
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SECTION 10.3 POLAR COORDINATES 657

Sketch the polar curve .

SOLUTION This curve consists of all points such that the polar angle is 1 radian. It
is the straight line that passes through and makes an angle of 1 radian with the polar
axis (see Figure 7). Notice that the points on the line with are in the first
quadrant, whereas those with are in the third quadrant.

(a) Sketch the curve with polar equation .
(b) Find a Cartesian equation for this curve.

SOLUTION
(a) In Figure 8 we find the values of for some convenient values of and plot the
corresponding points . Then we join these points to sketch the curve, which appears
to be a circle. We have used only values of between 0 and , since if we let increase
beyond , we obtain the same points again.

(b) To convert the given equation to a Cartesian equation we use Equations 1 and 2.
From we have , so the equation becomes ,
which gives

or    

Completing the square, we obtain

which is an equation of a circle with center and radius 1.

� � 1EXAMPLE 5

��r, ��
O

r � 0�r, 1�
r � 0

EXAMPLE 6
r � 2 cos �

�r
�r, ��

���
�

FIGURE 8
Table of values and
graph of  r=2 cos ̈

(2, 0)

2

”_1,      ’2π
3

”0,     ’π
2

”1,     ’π
3

”œ„,     ’π
4

”œ„,     ’π
63

”_ œ„,       ’5π
63

”_ œ„,       ’3π
42

r � 2x�rr � 2 cos �cos � � x�rx � r cos �

x 2 � y 2 � 2x � 02x � r 2 � x 2 � y 2

�x � 1�2 � y 2 � 1

�1, 0�

FIGURE 9

O

y

x2

¨

r

P

Q

O
x

1

(_1, 1)

(_2, 1)

(1, 1)

(2, 1)

(3, 1)

¨=1

FIGURE 7

0 2

1
0

�1

�2
�s3
�s2

s2
s3

�
5��6
3��4
2��3
��2
��3
��4
��6

� r � 2 cos �

Figure 9 shows a geometrical illustration 
that the circle in Example 6 has the equation

. The angle is a right angle
(Why?) and so .r�2 � cos �

OPQr � 2 cos �
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658 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Sketch the curve .

SOLUTION Instead of plotting points as in Example 6, we first sketch the graph of
in Cartesian coordinates in Figure 10 by shifting the sine curve up one

unit. This enables us to read at a glance the values of that correspond to increasing
values of . For instance, we see that as increases from 0 to , (the distance from )
increases from 1 to 2, so we sketch the corresponding part of the polar curve in Figure
11(a). As increases from to , Figure 10 shows that decreases from 2 to 1, so 
we sketch the next part of the curve as in Figure 11(b). As increases from to , 

decreases from 1 to 0 as shown in part (c). Finally, as increases from to , 
increases from 0 to 1 as shown in part (d). If we let increase beyond or decrease

beyond 0, we would simply re trace our path. Putting together the parts of the curve 
from Figure 11(a)–(d), we sketch the complete curve in part (e). It is called a cardioid
because it’s shaped like a heart.

Sketch the curve .

SOLUTION As in Example 7, we first sketch , , in Cartesian coor-
dinates in Figure 12. As increases from 0 to , Figure 12 shows that decreases
from 1 to 0 and so we draw the corresponding portion of the polar curve in Figure 13
(indicated by !). As increases from to , goes from 0 to . This means that
the distance from increases from 0 to 1, but instead of being in the first quadrant this
portion of the polar curve (indicated by @) lies on the opposite side of the pole in the
third quadrant. The remainder of the curve is drawn in a similar fashion, with the arrows
and numbers indicating the order in which the portions are traced out. The resulting
curve has four loops and is called a four-leaved rose.

r � 1 � sin �
r

Or��2��

r���2�
3��2��

2�3��2�r
2��r

(a) (b) (c) (d) (e)

FIGURE 11 Stages in sketching the cardioid r=1+sin ¨

O¨=π

¨=
π
2

O

¨=π

¨=
3π
2

O

¨=2π

¨=
3π
2

O

O ¨=0

¨=
π
2

1

2

r � cos 2�EXAMPLE 8

0 � � � 2�r � cos 2�
r��4�

�1r��2��4�
O

¨=0
¨=π

⑧

¨=
3π
4

¨=
π
2

¨=
π
4

FIGURE 12
r=cos 2¨ in Cartesian coordinates

FIGURE 13
Four-leaved rose r=cos 2¨

r

1

¨2ππ 5π
4

π
2

π
4

3π
4

3π
2

7π
4

!

@ # ^ &

% *$
!

@ #

$

%

& ^

r � 1 � sin �EXAMPLE 7v

FIGURE 10
r=1+sin ̈  in Cartesian coordinates,
0¯¨¯2π

0

r

1

2

¨π 2π3π
2

π
2

Module 10.3 helps you see how 
polar curves are traced out by showing 
animations similar to Figures 10–13. 

TEC
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SECTION 10.3 POLAR COORDINATES 659

Symmetry
When we sketch polar curves it is sometimes helpful to take advantage of symmetry. The
following three rules are explained by Figure 14.

(a) If a polar equation is unchanged when is replaced by , the curve is sym metric
about the polar axis.

(b) If the equation is unchanged when is replaced by , or when is replaced by
, the curve is symmetric about the pole. (This means that the curve remains

unchanged if we rotate it through 180° about the origin.)

(c) If the equation is unchanged when is replaced by , the curve is sym metric
about the vertical line .

The curves sketched in Examples 6 and 8 are symmetric about the polar axis, since
. The curves in Examples 7 and 8 are symmetric about because

and . The four-leaved rose is also symmetric
about the pole. These symmetry properties could have been used in sketching the curves.
For instance, in Example 6 we need only have plotted points for and then
reflected about the polar axis to obtain the complete circle.

Tangents to Polar Curves
To find a tangent line to a polar curve , we regard as a parameter and write its
parametric equations as

Then, using the method for finding slopes of parametric curves (Equation 10.2.1) and the
Product Rule, we have

We locate horizontal tangents by finding the points where (provided that
). Likewise, we locate vertical tangents at the points where (pro-

vided that ).
Notice that if we are looking for tangent lines at the pole, then and Equation 3 sim-

plifies to

���

��rr
� � �

� � ��
� � ��2

O

(r, ¨)

(_r, ¨)
O

(r, ¨)

(r, _¨)

_¨

¨

(a) (b) (c)

FIGURE 14

O

(r, ¨)(r, π-¨)

π-¨

¨

� � ��2cos���� � cos �
cos 2�� � �� � cos 2�sin�� � �� � sin �

0 � � � ��2

�r � f ���

y � r sin � � f ��� sin �x � r cos � � f ��� cos �

dy

dx
�

dy

d�

dx

d�

�

dr

d�
sin � � r cos �

dr

d�
cos � � r sin �

3

dy�d� � 0
dx�d� � 0dx�d� � 0

dy�d� � 0
r � 0

dr

d�
� 0if

dy

dx
� tan �
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660 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

For instance, in Example 8 we found that when or . This
means that the lines and (or and ) are tangent lines to

at the origin.

(a) For the cardioid of Example 7, find the slope of the tangent line 
when .
(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

SOLUTION Using Equation 3 with , we have

(a) The slope of the tangent at the point where is

(b) Observe that

Therefore there are horizontal tangents at the points , , and
vertical tangents at and . When , both and are
0, so we must be careful. Using l’Hospital’s Rule, we have

By symmetry,

Thus there is a vertical tangent line at the pole (see Figure 15).

r � cos 2� � 0 � � ��4 3��4
� � ��4 � � 3��4 y � x y � �x

r � cos 2�

r � 1 � sin �
� � ��3

r � 1 � sin �

dy

dx
�

dr

d�
sin � � r cos �

dr

d�
 cos � � r sin �

�
cos � sin � � �1 � sin �� cos �

cos � cos � � �1 � sin �� sin �

�
cos � �1 � 2 sin ��

1 � 2 sin2� � sin �
�

cos � �1 � 2 sin ��
�1 � sin ���1 � 2 sin ��

� � ��3

dy

dx �
��� �3

�
cos���3��1 � 2 sin���3��

�1 � sin���3���1 � 2 sin���3��
�

1
2 (1 � s3 )

(1 � s3�2)(1 � s3 )

�
1 � s3

(2 � s3 )(1 � s3 ) �
1 � s3

�1 � s3
� �1

dy

d�
� cos � �1 � 2 sin �� � 0 when � �

�

2
, 

3�

2
, 

7�

6
, 

11�

6

dx

d�
� �1 � sin ���1 � 2 sin �� � 0 when � �

3�

2
, 

�

6
, 

5�

6

�2, ��2� ( 1
2, 7��6) (1

2, 11��6)
(3

2, ��6) ( 3
2, 5��6) � � 3��2 dy�d� dx�d�

lim
�l�3��2��

dy

dx
� � lim

�l�3��2��

1 � 2 sin �

1 � 2 sin ��� lim
�l�3��2��

cos �

1 � sin ��
� �

1

3
 lim
�l�3��2��

cos �

1 � sin �
� �

1

3
 lim
�l�3��2��

�sin �

cos �
� 	

lim
� l�3��2��

dy

dx
� �	

EXAMPLE 9

”    ,       ’

”    ,    ’”    ,       ’5π
6

3
2

7π
6

1
2 ”    ,        ’11π

6
1
2

3
2

π
6

(0, 0)

m=_1

”1+       ,     ’π
3

œ„3
2

”2,     ’
π
2

FIGURE 15
Tangent lines for r=1+sin ¨
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SECTION 10.3 POLAR COORDINATES 661

NOTE Instead of having to remember Equation 3, we could employ the method used to
derive it. For instance, in Example 9 we could have written

Then we have

which is equivalent to our previous expression.

Graphing Polar Curves with Graphing Devices
Although it’s useful to be able to sketch simple polar curves by hand, we need to use a
graphing calculator or computer when we are faced with a curve as complicated as the ones
shown in Figures 16 and 17.

Some graphing devices have commands that enable us to graph polar curves directly.
With other machines we need to convert to parametric equations first. In this case we take
the polar equation and write its parametric equations as

Some machines require that the parameter be called rather than .

Graph the curve .

SOLUTION Let’s assume that our graphing device doesn’t have a built-in polar graphing
command. In this case we need to work with the corresponding parametric equations,
which are

In any case we need to determine the domain for . So we ask ourselves: How many
complete rotations are required until the curve starts to repeat itself? If the answer 
is , then

and so we require that be an even multiple of . This will first occur when
. Therefore we will graph the entire curve if we specify that . 

x � r cos � � �1 � sin �� cos � � cos � �
1
2 sin 2�

y � r sin � � �1 � sin �� sin � � sin � � sin2�

dy

dx
�

dy�d�

dx�d�
�

cos � � 2 sin � cos �

�sin � � cos 2�
�

cos � � sin 2�

�sin � � cos 2�

FIGURE 17
r=sin@(1.2¨)+cos#(6¨)

1.7

_1.7

_1.9 1.9

FIGURE 16
r=sin@(2.4¨)+cos$(2.4¨)

1

_1

_1 1

r � f ���

y � r sin � � f ��� sin �x � r cos � � f ��� cos �

�t

r � sin�8��5�EXAMPLE 10

y � r sin � � sin�8��5� sin �x � r cos � � sin�8��5� cos �

�

n

sin 
8�� � 2n��

5
� sin� 8�

5
�

16n�

5 � � sin 
8�

5

�16n��5
0 � � � 10�n � 5
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662 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1–2 Plot the point whose polar coordinates are given. Then find
two other pairs of polar coordinates of this point, one with
and one with .

1. (a) (b) (c) 

2. (a) (b) (c) 

3–4 Plot the point whose polar coordinates are given. Then find the
Cartesian coordinates of the point.

3. (a) (b) (c) 

r � 0
r � 0

��1, ��2��1, �3��4��2, ��3�

�1, �1���3, ��6��1, 7��4�

��2, 3��4�(2, �2��3)�1, ��

4. (a) (b) (c) 

5–6 The Cartesian coordinates of a point are given.
(i) Find polar coordinates of the point, where 
and .
(ii) Find polar coordinates of the point, where 
and .

5. (a) (b)

6. (a) (b)

�r, �� r � 0
0 � � � 2�

�r, �� r � 0
0 � � � 2�

�2, �2� (�1, s3 )
(3s3 , 3) �1, �2�

�2, �7��6��1, 5��2�(�s2 , 5��4)

10.3 Exercises

Switching from to , we have the equations

and Figure 18 shows the resulting curve. Notice that this rose has 16 loops.

Investigate the family of polar curves given by . How
does the shape change as changes? (These curves are called limaçons, after a French
word for snail, because of the shape of the curves for certain values of .)

SOLUTION Figure 19 shows computer-drawn graphs for various values of . For
there is a loop that decreases in size as decreases. When the loop disappears and
the curve becomes the cardioid that we sketched in Example 7. For between and the
cardioid’s cusp is smoothed out and becomes a “dimple.” When de creases from to ,
the limaçon is shaped like an oval. This oval becomes more circular as , and when

the curve is just the circle .

The remaining parts of Figure 19 show that as becomes negative, the shapes change
in reverse order. In fact, these curves are reflections about the horizontal axis of the corre-
sponding curves with positive .

Limaçons arise in the study of planetary motion. In particular, the trajectory of Mars, as
viewed from the planet Earth, has been modeled by a limaçon with a loop, as in the parts
of Figure 19 with .

x � sin�8t�5� cos t y � sin�8t�5� sin t 0 � t � 10�

r � 1 � c sin �
c

c

c c � 1
c c � 1

c 1 1
2

c 1
2 0

c l 0
c � 0 r � 1

c

c

EXAMPLE 11v

t�

� c � � 1

1

_1

_1 1

FIGURE 18
r=sin(8¨/5)

c=2.5

FIGURE 19
Members of the family of
limaçons r=1+c sin ̈

c=0 c=_0.2 c=_0.5 c=_0.8 c=_1

c=_2

c=1.7 c=1 c=0.7 c=0.5 c=0.2

In Exercise 53 you are asked to prove analytically
what we have discovered from the graphs in 
Figure 19.
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SECTION 10.3 POLAR COORDINATES 663

7–12 Sketch the region in the plane consisting of points whose
polar coordinates satisfy the given conditions.

7.

8. ,  

9. ,  

10. ,  

11. ,  

12. ,  

13. Find the distance between the points with polar coordinates
and .

14. Find a formula for the distance between the points with polar
coordinates and .

15–20 Identify the curve by finding a Cartesian equation for the
curve.

15. 16.

17. 18.

19. 20.

21–26 Find a polar equation for the curve represented by the given
Cartesian equation.

21. 22.

23. 24.

25. 26.

27–28 For each of the described curves, decide if the curve would
be more easily given by a polar equation or a Cartesian equation.
Then write an equation for the curve.

27. (a) A line through the origin that makes an angle of with
the positive -axis

(b) A vertical line through the point 

28. (a) A circle with radius 5 and center 
(b) A circle centered at the origin with radius 4

29–46 Sketch the curve with the given polar equation by first
sketching the graph of as a function of in Cartesion coordinates.

29. 30.

31. 32.

33. , 34. ,

35. 36.

37. 38.

39. 40.

r 
 1

0 � r � 2 � � � � 3��2

r 
 0 ��4 � � � 3��4

1 � r � 3 ��6 � � � 5��6

2 � r � 3 5��3 � � � 7��3

r 
 1 � � � � 2�

�4, 2��3��2, ��3�

�r2, �2 ��r1, �1�

r � 4 sec �r 2 � 5

� � ��3r � 2 cos �

r 2 cos 2� � 1 r � tan � sec �

y � xy � 2

4y 2 � xy � 1 � 3x

x 2 � y 2 � 2cx xy � 4

��6
x

�3, 3�

�2, 3�

r � 1 � cos �r � �2 sin �

r �

r � 2�1 � cos ��

r � � � 
 0 r � ln � � 
 1

r � cos 5�r � 4 sin 3�

r � 3 cos 6�r � 2 cos 4�

r � 2 � sin �r � 1 � 2 sin �

r � 1 � 2 cos �

41. 42.

43. 44.

45. 46.

47–48 The figure shows a graph of as a function of in Cartesian
coordinates. Use it to sketch the corresponding polar curve.

47. 48.

49. Show that the polar curve (called a conchoid)
has the line as a vertical asymptote by showing that

. Use this fact to help sketch the conchoid.

50. Show that the curve (also a conchoid) has the
line as a horizontal asymptote by showing that

. Use this fact to help sketch the conchoid.

51. Show that the curve (called a cissoid of 
Diocles) has the line as a vertical asymptote. Show also
that the curve lies entirely within the vertical strip .
Use these facts to help sketch the cissoid.

52. Sketch the curve .

53. (a) In Example 11 the graphs suggest that the limaçon
has an inner loop when . Prove

that this is true, and find the values of that correspond to
the inner loop.

(b) From Figure 19 it appears that the limaçon loses its dimple
when . Prove this.

54. Match the polar equations with the graphs labeled I–VI. Give
reasons for your choices. (Don’t use a graphing device.)

(a) (b)
(c) (d)
(e) (f )

r � 2 � sin 3� r 2� � 1

r � 1 � 2 cos 2� r � 3 � 4 cos �

r �

¨

r

0 π 2π

2

_2
¨

r

0 π 2π

1

2

r � 4 � 2 sec �
x � 2

lim r l�	 x � 2

r � 2 � csc �
y � �1

lim r l�	 y � �1

r � sin � tan �
x � 1

0 � x � 1

�x 2 � y 2 �3 � 4x 2 y 2

r � 1 � c sin � � c � � 1
�

c � 1
2

r � s� ,  0 � � � 16� r � � 2,   0 � � � 16�

r � cos���3� r � 1 � 2 cos �
r � 2 � sin 3� r � 1 � 2 sin 3�

I II III

IV V VI

r 2 � cos 4�r 2 � 9 sin 2�
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664 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

55–60 Find the slope of the tangent line to the given polar curve
at the point specified by the value of .

55. ,  56. ,  

57. , 58. ,  

59. ,  60. ,  

61–64 Find the points on the given curve where the tangent line
is horizontal or vertical.

61. 62.

63. 64.

65. Show that the polar equation , where
, represents a circle, and find its center and radius.

66. Show that the curves and intersect at
right angles.

; 67–72 Use a graphing device to graph the polar curve. Choose
the parameter interval to make sure that you produce the entire
curve.

67. (nephroid of Freeth)

68. (hippopede)

69. (butterfly curve)

70. (valentine curve)

71. (PacMan curve)

72.

; 73. How are the graphs of and
related to the graph of ?

In general, how is the graph of related to the
graph of ?

�

� � ��3r � 2 � sin �� � ��6r � 2 sin �

r � 1�� � � � r � cos���3� � � �

r � cos 2� � � ��4 r � 1 � 2 cos� � � ��3

r � 3 cos � r � 1 � sin �

r � 1 � cos � r � e �

r � a sin � � b cos �
ab � 0

r � a cos �r � a sin �

r � 1 � 2 sin���2�

r � s1 � 0.8 sin 2�

r � e sin � � 2 cos�4��

r � � tan � �� cot � �

r � 1 � cos999�

r � sin2�4�� � cos�4��

r � 1 � sin�� � ��6�
r � 1 � sin �r � 1 � sin�� � ��3�

r � f �� � ��
r � f ���

; 74. Use a graph to estimate the -coordinate of the highest points
on the curve . Then use calculus to find the exact
value.

; 75. Investigate the family of curves with polar equations
, where is a real number. How does the

shape change as changes?

; 76. Investigate the family of polar curves

where is a positive integer. How does the shape change as
increases? What happens as becomes large? Explain the
shape for large by considering the graph of as a function
of in Cartesian coordinates.

77. Let be any point (except the origin) on the curve .
If is the angle between the tangent line at and the radial
line , show that

[Hint: Observe that in the figure.]

78. (a) Use Exercise 77 to show that the angle between the tan-
gent line and the radial line is at every point on
the curve .

; (b) Illustrate part (a) by graphing the curve and the tangent
lines at the points where and .

(c) Prove that any polar curve with the property that
the angle between the radial line and the tangent line is
a constant must be of the form , where and
are constants.

OP

tan  �
r

dr�d�

 � � � �

O

P

ÿ

¨ ˙

r=f(¨ )

 � ��4
r � e�

� � 0 ��2
r � f ���


r � Ce k� C k

y
r � sin 2�

r � 1 � c cos � c
c

r � 1 � cosn�

n n
n

n r
�

r � f ���P
P

L A B O R AT O R Y  P R O J E C T ; FAMILIES OF POLAR CURVES

In this project you will discover the interesting and beautiful shapes that members of families of
polar curves can take. You will also see how the shape of the curve changes when you vary the
constants.

1. (a) Investigate the family of curves defined by the polar equations , where is a
positive integer. How is the number of loops related to ?

(b) What happens if the equation in part (a) is replaced by ?

2. A family of curves is given by the equations , where is a real number and 
is a positive integer. How does the graph change as increases? How does it change as

changes? Illustrate by graphing enough members of the family to support your conclusions.

r � sin n� n
n
r � � sin n� �

r � 1 � c sin n� c
n n c

; Graphing calculator or computer required
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES 665

3. A family of curves has polar equations

Investigate how the graph changes as the number changes. In particular, you should identify
the transitional values of for which the basic shape of the curve changes.

4. The astronomer Giovanni Cassini (1625–1712) studied the family of curves with polar 
equations

where and are positive real numbers. These curves are called the ovals of Cassini even
though they are oval shaped only for certain values of and . (Cassini thought that these
curves might represent planetary orbits better than Kepler’s ellipses.) Investigate the variety of
shapes that these curves may have. In particular, how are and related to each other when
the curve splits into two parts?

a
a

r 4 � 2c2r 2 cos 2� � c 4 � a 4 � 0 

a c
a c

a c

r �
1 � a cos �

1 � a cos �

In this section we develop the formula for the area of a region whose boundary is given by
a polar equation. We need to use the formula for the area of a sector of a circle:

where, as in Figure 1, is the radius and is the radian measure of the central angle. 
Formula 1 follows from the fact that the area of a sector is proportional to its central angle:

. (See also Exercise 35 in Section 7.3.)
Let be the region, illustrated in Figure 2, bounded by the polar curve 

and by the rays and , where is a positive continuous function and where
. We divide the interval into subintervals with endpoints , 

, , . . . , and equal width . The rays then divide into smaller regions 
with central angle . If we choose in the th subinterval , then 
the area of the th region is approximated by the area of the sector of a circle with cen-
tral angle and radius . (See Figure 3.)

Thus from Formula 1 we have

and so an approximation to the total area of is

It appears from Figure 3 that the approximation in improves as . But the sums
in are Riemann sums for the function , so

1 A � 1
2 r 2�

r �

A � ���2���r 2 � 1
2 r 2�

� r � f ���
� � a � � b f

0 � b � a � 2� 	a, b
 �0

�1 �2 �n �� � � �i � n
�� � �i � �i�1 �i* i 	�i�1, �i


�Ai i
�� f ��i*�

�Ai � 1
2 	 f ��i*�
2 ��

A �

2 A � �
n

i�1

1
2 	 f ��i*�
2 ��

n l 	

t��� � 1
2 	 f ���
2

lim
n l 	

�
n

i�1

1
2 	 f ��i*�
2 �� � y

b

a

1
2 	 f ���
2 d�

2
2

10.4 Areas and Lengths in Polar Coordinates

¨

r

FIGURE 1

FIGURE 2

O

¨=b

b
¨=a

r=f(¨)

a

�

O

¨=b

¨=a

¨=¨i-1

¨=¨i

Î¨

f(̈ i
*)

FIGURE 3
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666 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

It therefore appears plausible (and can in fact be proved) that the formula for the area of
the polar region is

Formula 3 is often written as

with the understanding that . Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4 it is helpful to think of the area as being swept out by a

rotating ray through that starts with angle and ends with angle .

Find the area enclosed by one loop of the four-leaved rose .

SOLUTION The curve was sketched in Example 8 in Section 10.3. Notice
from Figure 4 that the region enclosed by the right loop is swept out by a ray that rotates
from to . Therefore Formula 4 gives

Find the area of the region that lies inside the circle and out-
side the cardioid .

SOLUTION The cardioid (see Example 7 in Section 10.3) and the circle are sketched in
Figure 5 and the desired region is shaded. The values of and in Formula 4 are deter-
mined by finding the points of intersection of the two curves. They intersect when

, which gives , so , . The desired area can be
found by subtracting the area inside the cardioid between and from
the area inside the circle from to . Thus

Since the region is symmetric about the vertical axis , we can write

[because ]

A
�

3 A � y
b

a

1
2 � f ����2 d�

4 A � y
b

a

1
2 r 2 d�

r � f ���

O a b

r � cos 2�

r � cos 2�

� � ���4 � � ��4

A � y
��4

���4

1
2 r 2 d� � 1

2 y
��4

���4
cos2 2� d� � y

��4

0
cos2 2� d�

A � y
��4

0

1
2 �1 � cos 4�� d� � 1

2 [� �
1
4 sin 4�]0

��4
�

�

8

v EXAMPLE 1

r � 3 sin �
r � 1 � sin �

a b

3 sin � � 1 � sin � sin � � 1
2 � � ��6 5��6

� � ��6 � � 5��6
��6 5��6

A � 1
2 y

5��6

��6
�3 sin ��2 d� �

1
2 y

5��6

��6
�1 � sin ��2 d�

� � ��2

A � 2�1
2 y

��2

��6
9 sin2� d� �

1
2 y

��2

��6
�1 � 2 sin � � sin2�� d��

� y
��2

��6
�8 sin2� � 1 � 2 sin �� d�

� y
��2

��6
�3 � 4 cos 2� � 2 sin �� d� sin2� � 1

2 �1 � cos 2��

� 3� � 2 sin 2� � 2 cos �]��6

��2
� �

v EXAMPLE 2

r=cos 2¨ ¨=
π
4

¨=_
π
4

FIGURE 4

FIGURE 5

O

¨=
5π
6

¨=
π
6

r=3 sin ̈

r=1+sin ¨
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES 667

Example 2 illustrates the procedure for finding the area of the region bounded by two
polar curves. In general, let be a region, as illustrated in Figure 6, that is bounded by
curves with polar equations , , , and , where
and . The area of is found by subtracting the area inside
from the area inside , so using Formula 3 we have

| CAUTION The fact that a single point has many representations in polar coordinates
sometimes makes it difficult to find all the points of intersection of two polar curves. For
instance, it is obvious from Figure 5 that the circle and the cardioid have three points of
intersection; however, in Example 2 we solved the equations and
and found only two such points, and . The origin is also a point of inter-
section, but we can’t find it by solving the equations of the curves because the origin has 
no single representation in polar coordinates that satisfies both equations. Notice that, when
represented as or , the origin satisfies and so it lies on the circle;
when represented as , it satisfies and so it lies on the cardioid. 
Think of two points moving along the curves as the parameter value increases from 0 to

. On one curve the origin is reached at and ; on the other curve it is reached
at . The points don’t collide at the origin because they reach the origin at differ-
ent times, but the curves intersect there nonetheless.

Thus, to find all points of intersection of two polar curves, it is recommended that you
draw the graphs of both curves. It is especially convenient to use a graphing calculator or
computer to help with this task.

Find all points of intersection of the curves and .

SOLUTION If we solve the equations and , we get and, there-
fore, , , , . Thus the values of between and that satisfy
both equations are , , , . We have found four points of inter -
section: , , and .

However, you can see from Figure 7 that the curves have four other points of inter-
 section—namely, , , , and . These can be found using
symmetry or by noticing that another equation of the circle is and then solving
the equations and .

Arc Length
To find the length of a polar curve , , we regard as a parameter and
write the parametric equations of the curve as

Using the Product Rule and differentiating with respect to , we obtain

�
r � f ��� r � t��� � � a � � b f ��� � t��� � 0

0 � b � a � 2� A � r � t���
r � f ���

A � y
b

a

1
2 � f ����2 d� � y

b

a

1
2 �t����2 d�

� 1
2 y

b

a
(� f ����2 � �t����2) d�

r � 3 sin � r � 1 � sin �
( 3

2, ��6) (3
2, 5��6)

�0, 0� �0, �� r � 3 sin �
�0, 3��2� r � 1 � sin �

�
2� � � 0 � � �

� � 3��2

r � cos 2� r � 1
2

r � cos 2� r � 1
2 cos 2� � 1

2

2� � ��3 5��3 7��3 11��3 � 0 2�
� � ��6 5��6 7��6 11��6

( 1
2, ��6) (1

2, 5��6), ( 1
2, 7��6) ( 1

2, 11��6)

( 1
2, ��3) (1

2, 2��3) (1
2, 4��3) ( 1

2, 5��3)
r � �

1
2

r � cos 2� r � �
1
2

EXAMPLE 3

r � f ��� a � � � b �

x � r cos � � f ��� cos � y � r sin � � f ��� sin �

�

dx

d�
�

dr

d�
cos � � r sin �

dy

d�
�

dr

d�
sin � � r cos �

O

¨=b

¨=a

r=f(¨)

�

r=g(¨)

FIGURE 6

FIGURE 7

r=cos 2¨

1
2

r=
”   ,     ’

1
2

π
3

”   ,    ’
1
2

π
6
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668 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

so, using , we have

Assuming that is continuous, we can use Theorem 10.2.5 to write the arc length as

Therefore the length of a curve with polar equation , , is

Find the length of the cardioid .

SOLUTION The cardioid is shown in Figure 8. (We sketched it in Example 7 in
Section 10.3.) Its full length is given by the parameter interval , so 
Formula 5 gives 

We could evaluate this integral by multiplying and dividing the integrand by
, or we could use a computer algebra system. In any event, we find that the

length of the cardioid is .

� � 	 dr

d�

2

sin2� � 2r
dr

d�
sin � cos � � r 2 cos2�

� 	 dr

d�

2

� r 2

f 	

L � y
b

a
�	 dx

d�
2

� 	 dy

d�
2 

d�

cos2� � sin2� � 1

	 dx

d�

2

� 	 dy

d�

2

� 	 dr

d�

2

cos2� � 2r
dr

d�
cos � sin � � r 2 sin2�

r � f ��� a � � � b

5 L � y
b

a
�r 2 � 	 dr

d�
2 

d�

r � 1 � sin �

0 � � � 2�

L � y
2�

0
�r 2 � 	 dr

d�
2 

d� � y
2�

0
s�1 � sin ��2 � cos2� d�

� y
2�

0
s2 � 2 sin � d�

s2 � 2 sin �
L � 8

v EXAMPLE 4

O

FIGURE 8
r=1+sin ¨

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1–4 Find the area of the region that is bounded by the given curve
and lies in the specified sector.

1. ,  

2. ,  

3. ,  ,  

4. ,  

r � e���4 ��2 � � � �

r � cos � 0 � � � ��6

r 2 � 9 sin 2� 0 � � � ��2

r � tan � ��6 � � � ��3

r � 0

5–8 Find the area of the shaded region.

5. 6.

r=œ„̈ r=1+cos ¨

10.4 Exercises
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES 669

7. 8.

9–12 Sketch the curve and find the area that it encloses.

9. 10.

11. 12.

; 13–16 Graph the curve and find the area that it encloses.

13. 14.

15. 16.

17–21 Find the area of the region enclosed by one loop of 
the curve.

17. 18.

19. 20.

21. (inner loop)

22. Find the area enclosed by the loop of the strophoid
.

23–28 Find the area of the region that lies inside the first curve
and outside the second curve.

23. ,  24. ,  

25. ,  

26. ,  

27. ,  

28. ,  

29–34 Find the area of the region that lies inside both curves.

29. ,  

30. ,  

31. ,  

32. ,  

33. ,  

34. ,  ,  , 

r=4+3 sin ¨ r=sin 2̈

r � 1 � sin �r � 2 sin �

r � 4 � 3 sin �r � 3 � 2 cos �

r � 3 � 2 cos 4�r � 2 � sin 4�

r � s1 � cos2�5�� r � 1 � 5 sin 6�

r 2 � sin 2�r � 4 cos 3�

r � sin 4� r � 2 sin 5�

r � 1 � 2 sin �

r � 2 cos � � sec �

r � 1r � 1 � sin �r � 1r � 2 cos �

r � 2 � sin �

r � 2r 2 � 8 cos 2�

r � 3 sin �

r � 1 � cos �r � 3 cos �

r � 2 � sin �r � 3 sin �

r � sin �r � s3 cos �

r � 1 � cos �r � 1 � cos �

r � cos 2�r � sin 2�

r � 3 � 2 sin �r � 3 � 2 cos �

r 2 � sin 2� r 2 � cos 2�

r � a sin � r � b cos � a 
 0 b 
 0

35. Find the area inside the larger loop and outside the smaller
loop of the limaçon .

36. Find the area between a large loop and the enclosed small
loop of the curve .

37–42 Find all points of intersection of the given curves.

37. ,  

38. ,  

39. ,  

40. ,  

41. ,  

42. ,  

; 43. The points of intersection of the cardioid and
the spiral loop , , can’t be found
exactly. Use a graphing device to find the approximate values
of at which they intersect. Then use these values to esti-
mate the area that lies inside both curves.

44. When recording live performances, sound engineers often use 
a microphone with a cardioid pickup pattern because it sup-
presses noise from the audience. Suppose the microphone is
placed 4 m from the front of the stage (as in the figure) and
the boundary of the optimal pickup region is given by the
cardioid , where is measured in meters and
the microphone is at the pole. The musicians want to know
the area they will have on stage within the optimal pickup
range of the microphone. Answer their question.

45–48 Find the exact length of the polar curve.

45. ,  

46. ,  

47. ,  

48.

; 49–50 Find the exact length of the curve. Use a graph to
determine the parameter interval.

49. 50.

r � 1 � 2 cos 3�

r � 1 � sin � r � 3 sin �

r � 1 � cos � r � 1 � sin �

r � 2 sin 2� r � 1

r � cos 3� r � sin 3�

r � sin � r � sin 2�

r 2 � sin 2� r 2 � cos 2�

r � 1 � sin �
r � 2� ���2 � � � ��2

�

r � 8 � 8 sin � r

stage

audience
microphone

12 m

4 m

r � 2 cos � 0 � � � �

r � 5� 0 � � � 2�

r � � 2 0 � � � 2�

r � 2�1 � cos ��

r � cos4���4� r � cos2���2�

r � 1
2 � cos �
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670 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

51–54 Use a calculator to find the length of the curve correct to
four decimal places. If necessary, graph the curve to determine the
parameter interval.

51. One loop of the curve 

52. ,  

53.

54.

55. (a) Use Formula 10.2.6 to show that the area of the surface
generated by rotating the polar curve

r � cos 2�

��6 � � � ��3r � tan �

r � sin���4�

r � sin�6 sin ��

a � � � br � f ���

(where is continuous and ) about the
polar axis is

(b) Use the formula in part (a) to find the surface area
generated by rotating the lemniscate about the 
polar axis.

56. (a) Find a formula for the area of the surface generated by
rotating the polar curve , (where is
continuous and ), about the line .

(b) Find the surface area generated by rotating the lemniscate
about the line .

r 2 � cos 2�

f �a � � � br � f ���
0 � a � b � � � � ��2

� � ��2r 2 � cos 2�

S � y
b

a
2�r sin ��r 2 � � dr

d��2

d�

0 � a � b � �f �

In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and
derive their standard equations. They are called conic sections, or conics, because they
result from intersecting a cone with a plane as shown in Figure 1.

Parabolas
A parabola is the set of points in a plane that are equidistant from a fixed point (called
the focus) and a fixed line (called the directrix). This definition is illustrated by Figure 2.
Notice that the point halfway between the focus and the directrix lies on the parabola; it is
called the vertex. The line through the focus perpendicular to the directrix is called the axis
of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into 
the air at an angle to the ground is a parabola. Since then, parabolic shapes have been 
used in designing automobile headlights, reflecting telescopes, and suspension bridges. (See
Problem 20 on page 271 for the reflection property of parabolas that makes them so useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the 
origin and its directrix parallel to the -axis as in Figure 3. If the focus is the point 

, then the directrix has the equation . If is any point on the parabola, 

FIGURE 1
Conics

ellipse hyperbolaparabola

F

xO
P�x, y�y � �p�0, p�

10.5 Conic Sections

axis

F
focus

parabola

vertex directrix

FIGURE 2
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SECTION 10.5 CONIC SECTIONS 671

then the distance from to the focus is

and the distance from to the directrix is . (Figure 3 illustrates the case where
.) The defining property of a parabola is that these distances are equal:

We get an equivalent equation by squaring and simplifying:

An equation of the parabola with focus and directrix is

If we write , then the standard equation of a parabola becomes .
It opens upward if and downward if [see Figure 4, parts (a) and (b)]. The
graph is symmetric with respect to the -axis because is unchanged when is replaced
by .

If we interchange and in , we obtain

which is an equation of the parabola with focus and directrix . (Inter changing
and amounts to reflecting about the diagonal line .) The parabola opens to the right

if and to the left if [see Figure 4, parts (c) and (d)]. In both cases the graph is
symmetric with respect to the -axis, which is the axis of the parabola.

Find the focus and directrix of the parabola and sketch 
the graph.

SOLUTION If we write the equation as and compare it with Equation 2, we see
that , so . Thus the focus is and the directrix is .
The sketch is shown in Figure 5.

P

� PF � � sx 2 � �y � p�2 

p 
 0
� y � p �P

sx 2 � �y � p�2 � � y � p �

x 2 � �y � p�2 � � y � p �2 � �y � p�2

x 2 � y 2 � 2py � p 2 � y 2 � 2py � p 2

x 2 � 4py

�0, p�1 y � �p

x 2 � 4py

y � ax 21a � 1��4p�
p � 0p 
 0

x1y
�x

FIGURE 4

0 x

y

( p, 0)

x=_p

(d) ¥=4px, p<0

0 x

y

( p, 0)

x=_p

(c) ¥=4px, p>0

0

x

y

(0, p)

y=_p

(b) ≈=4py, p<0

0 x

y

(0, p)

y=_p

(a) ≈=4py, p>0

1yx

y 2 � 4px2

x � �p�p, 0�
y � xyx

p � 0p 
 0
x

y 2 � 10x � 0EXAMPLE 1

y 2 � �10x
x � 5

2� p, 0� � (� 5
2, 0)p � �

5
24p � �10

FIGURE 3

x

y

O

F(0, p)

y=_p

P(x, y)

y

p

FIGURE 5

0 x

y

x=
5
2

¥+10x=0

”_   , 0’5
2
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672 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Ellipses
An ellipse is the set of points in a plane the sum of whose distances from two fixed points

and is a constant (see Figure 6). These two fixed points are called the foci (plural of
focus). One of Kepler’s laws is that the orbits of the planets in the solar system are ellipses
with the sun at one focus.

In order to obtain the simplest equation for an ellipse, we place the foci on the -axis at
the points and as in Figure 7 so that the origin is halfway between the foci. Let
the sum of the distances from a point on the ellipse to the foci be . Then is a
point on the ellipse when

that is,

or

Squaring both sides, we have

which simplifies to

We square again:

which becomes

From triangle in Figure 7 we see that , so and therefore 
. For convenience, let . Then the equation of the ellipse becomes

or, if both sides are divided by , 

Since , it follows that . The -intercepts are found by setting 
. Then , or , so . The corresponding points and

are called the vertices of the ellipse and the line segment joining the vertices 
is called the major axis. To find the -intercepts we set and obtain , so

. The line segment joining and is the minor axis. Equation 3 is
unchanged if is replaced by or is replaced by , so the ellipse is symmetric about
both axes. Notice that if the foci coincide, then , so and the ellipse becomes a
circle with radius .

We summarize this discussion as follows (see also Figure 8).

F2F1

FIGURE 6

F¡ F™

P

FIGURE 7

F¡(_c, 0) F™(c, 0)0 x

y

P(x, y)

x
�c, 0���c, 0�

P�x, y�2a 
 0

� PF1 � � � PF2 � � 2a

s�x � c�2 � y 2 � s�x � c�2 � y 2 � 2a

s�x � c�2 � y 2 � 2a � s�x � c�2 � y 2 

x 2 � 2cx � c 2 � y 2 � 4a 2 � 4as�x � c�2 � y 2 � x 2 � 2cx � c 2 � y 2

as�x � c�2 � y 2 � a 2 � cx

a 2�x 2 � 2cx � c 2 � y 2 � � a 4 � 2a 2cx � c 2x 2

�a 2 � c 2 �x 2 � a 2y 2 � a 2�a 2 � c 2 �

c � a2c � 2aF1F2P
b 2 � a 2 � c 2a 2 � c 2 
 0

a 2b 2b 2x 2 � a 2y 2 � a 2b 2

x 2

a 2 �
y 2

b 2 � 13

xb � ab 2 � a 2 � c 2 � a 2

�a, 0�x � �ax 2 � a 2x 2�a 2 � 1y � 0
��a, 0�

y
�0, b�y � �b

y 2 � b 2x � 0
�0, �b�

�yy�xx
a � bc � 0

r � a � b
+     =1,

FIGURE 8
≈

a@

¥

b@

(c, 0)0 x

y

ab

c

(0, b)

(_c, 0)

(0, _b)

(a, 0)

(_a, 0)

a˘b
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SECTION 10.5 CONIC SECTIONS 673

The ellipse

has foci , where , and vertices .

If the foci of an ellipse are located on the -axis at , then we can find its equation
by interchanging and in . (See Figure 9.)

The ellipse

has foci , where , and vertices .

Sketch the graph of and locate the foci.

SOLUTION Divide both sides of the equation by 144:

The equation is now in the standard form for an ellipse, so we have , ,
, and . The -intercepts are and the -intercepts are . Also,

, so and the foci are . The graph is sketched in 
Figure 10.

Find an equation of the ellipse with foci and vertices .

SOLUTION Using the notation of , we have and . Then we obtain
, so an equation of the ellipse is

Another way of writing the equation is .

Like parabolas, ellipses have an interesting reflection property that has practical conse-
quences. If a source of light or sound is placed at one focus of a surface with elliptical 
cross-sections, then all the light or sound is reflected off the surface to the other focus (see
Exercise 65). This principle is used in lithotripsy, a treatment for kidney stones. A reflector
with elliptical cross-section is placed in such a way that the kidney stone is at one focus.
High-intensity sound waves generated at the other focus are reflected to the stone and
destroy it without damaging surrounding tissue. The patient is spared the trauma of surgery
and recovers within a few days.

Hyperbolas
A hyperbola is the set of all points in a plane the difference of whose distances from two
fixed points and (the foci) is a constant. This definition is illustrated in Figure 11.

Hyperbolas occur frequently as graphs of equations in chemistry, physics, biology, and
economics (Boyle’s Law, Ohm’s Law, supply and demand curves). A particularly signifi-

4

a � b 
 0
x 2

a 2 �
y 2

b 2 � 1

��a, 0�c 2 � a 2 � b 2��c, 0�

�0, �c�y
4yx

5

a � b 
 0
x 2

b 2 �
y 2

a 2 � 1

�0, �a�c 2 � a 2 � b 2�0, �c�

9x 2 � 16y 2 � 144EXAMPLE 2v

x 2

16
�

y 2

9
� 1

b 2 � 9a 2 � 16
�3y�4xb � 3a � 4

(�s7 , 0)c � s7c 2 � a 2 � b 2 � 7

�0, �3��0, �2�EXAMPLE 3v

a � 3c � 25
b 2 � a 2 � c 2 � 9 � 4 � 5

x 2

5
�

y 2

9
� 1

9x 2 � 5y 2 � 45

F2F1

0 x

y
(0, a)

(0, c)

(b, 0)

(0, _c)

(_b, 0)

(0, _a)

≈

b@

¥

a@
+     =1,  a˘b

FIGURE 9

0 x

y

(0, 3)

{œ„7, 0}

(4, 0)
(_4, 0)

(0, _3)

{_œ„7, 0}

FIGURE 10
9≈+16¥=144

FIGURE 11
P is on the hyperbola when
|PF¡|-|PF™ |=�2a.

F™(c, 0)F¡(_c, 0) 0 x

y

P(x, y)
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674 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

cant application of hyperbolas is found in the navigation systems developed in World Wars
I and II (see Exercise 51).

Notice that the definition of a hyperbola is similar to that of an ellipse; the only change
is that the sum of distances has become a difference of distances. In fact, the derivation of
the equation of a hyperbola is also similar to the one given earlier for an ellipse. It is left as
Exercise 52 to show that when the foci are on the -axis at and the difference of dis-
tances is , then the equation of the hyperbola is

where . Notice that the -intercepts are again and the points and
are the vertices of the hyperbola. But if we put in Equation 6 we get

, which is impossible, so there is no -intercept. The hyperbola is symmetric with
respect to both axes.

To analyze the hyperbola further, we look at Equation 6 and obtain

This shows that , so . Therefore we have or . This
means that the hyperbola consists of two parts, called its branches.

When we draw a hyperbola it is useful to first draw its asymptotes, which are the dashed
lines and shown in Figure 12. Both branches of the hyperbola
approach the asymptotes; that is, they come arbitrarily close to the asymptotes. [See Exer-
cise 73 in Section 4.5, where these lines are shown to be slant asymptotes.]

The hyperbola

has foci , where , vertices , and asymptotes
.

If the foci of a hyperbola are on the -axis, then by reversing the roles of and we
obtain the following information, which is illustrated in Figure 13.

The hyperbola

has foci , where , vertices , and asymptotes
.

Find the foci and asymptotes of the hyperbola and sketch
its graph.

��c, 0�x

� PF1 � � � PF2 � � �2a

x 2

a 2 �
y 2

b 2 � 16

�a, 0��axc 2 � a 2 � b 2

��a, 0�
y 2 � �b 2

x � 0
y

x 2

a 2 � 1 �
y 2

b 2 � 1

x � �ax � a� x � � sx 2 � ax 2 � a 2

y � �b�a�x y � ��b�a�x

7

x 2

a 2 �
y 2

b 2 � 1

��a, 0�c 2 � a 2 � b 2��c, 0�
y � ��b�a�x

yxy

8

y 2

a 2 �
x 2

b 2 � 1

�0, �a�c 2 � a 2 � b 2�0, �c�
y � ��a�b�x

9x 2 � 16y 2 � 144EXAMPLE 4

(a, 0)

FIGURE 12
¥

b@
-     =1

≈

a@

(c, 0)0 x

y

(_c, 0)

(_a, 0)

y=_   x
b
a y=   x

b
a

0 x

y

(0, c)

(0, _c)

(0, a)

(0, _a)

y=_   x
a
b

a
by=   x

FIGURE 13
≈

b@
-     =1

¥

a@
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FIGURE 14
9≈-16¥=144

0 x

y

(5, 0)(_5, 0)

(4, 0)(_4, 0)

y=_   x3
4

y=   x3
4

FIGURE 15
9≈-4¥-72x+8y+176=0

0 x

y

y-1=_   (x-4)
3
2

y-1=   (x-4)
3
2

(4, 4)

(4, _2)

(4, 1)

SOLUTION If we divide both sides of the equation by 144, it becomes

which is of the form given in with and . Since , the
foci are . The asymptotes are the lines and . The graph is shown
in Figure 14.

Find the foci and equation of the hyperbola with vertices and asymp-
tote .

SOLUTION From and the given information, we see that and . Thus
and . The foci are and the equation of the

hyperbola is

Shifted Conics
As discussed in Appendix C, we shift conics by taking the standard equations , , ,

, , and and replacing and by and .

Find an equation of the ellipse with foci , and vertices 
, . 

SOLUTION The major axis is the line segment that joins the vertices , 
and has length , so . The distance between the foci is , so . Thus

. Since the center of the ellipse is , we replace and in 
by and to obtain

as the equation of the ellipse.

Sketch the conic and find its foci.

SOLUTION We complete the squares as follows:

This is in the form except that and are replaced by and . Thus
, , and . The hyperbola is shifted four units to the right and one

unit upward. The foci are and and the vertices are and
. The asymptotes are . The hyperbola is sketched in

Figure 15.

a � 4 b � 3 c 2 � 16 � 9 � 25
��5, 0� y � 3

4 x y � �
3
4 x

x 2

16
�

y 2

9
� 1

�0, �1�
y � 2x

a � 1 a�b � 2
b � a�2 � 1

2 c 2 � a 2 � b 2 � 5
4 (0, �s5�2)

y 2 � 4x 2 � 1

EXAMPLE 5

7

8

x y x � h y � k

�2, �2� �4, �2�
�1, �2� �5, �2�

�1, �2� �5, �2�
4 a � 2 2 c � 1

b2 � a 2 � c 2 � 3 �3, �2� x y
x � 3 y � 2

�x � 3�2

4
�

�y � 2�2

3
� 1

1 2 4
5 7 8

EXAMPLE 6

9x 2 � 4y 2 � 72x � 8y � 176 � 0

4�y 2 � 2y� � 9�x 2 � 8x� � 176

4�y 2 � 2y � 1� � 9�x 2 � 8x � 16� � 176 � 4 � 144

4�y � 1�2 � 9�x � 4�2 � 36

�y � 1�2

9
�

�x � 4�2

4
� 1

x y x � 4 y � 1
a 2 � 9 b 2 � 4 c 2 � 13

(4, 1 � s13 ) (4, 1 � s13 ) �4, 4�
�4, �2� y � 1 � �

3
2 �x � 4�

v EXAMPLE 7

4

8
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676 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

1–8 Find the vertex, focus, and directrix of the parabola and sketch
its graph.

1. 2.

3. 4.

5. 6.

7. 8.

9–10 Find an equation of the parabola. Then find the focus and
directrix.

9. 10.

11–16 Find the vertices and foci of the ellipse and sketch 
its graph.

11. 12.

13. 14.

15.

16.

17–18 Find an equation of the ellipse. Then find its foci.

17. 18.

19–24 Find the vertices, foci, and asymptotes of the hyperbola and
sketch its graph.

19. 20.

21. 22.

x 2 � 6y 2y 2 � 5x

2x � �y 2 3x 2 � 8y � 0

�x � 2�2 � 8�y � 3� x � 1 � �y � 5�2

y 2 � 2y � 12x � 25 � 0 y � 12x � 2x 2 � 16

y

x

1

_2

y

x

1

20

x 2

2
�

y 2

4
� 1

x 2

36
�

y 2

8
� 1

x 2 � 9y 2 � 9 100x 2 � 36y 2 � 225

9x 2 � 18x � 4y 2 � 27

x 2 � 3y2 � 2x � 12y � 10 � 0

y

x

1

10

y

x

1

2

y 2

25
�

x 2

9
� 1

x 2

36
�

y 2

64
� 1

x 2 � y 2 � 100 y 2 � 16x 2 � 16

23.

24.

25–30 Identify the type of conic section whose equation is given
and find the vertices and foci.

25. 26.

27. 28.

29. 30.

31–48 Find an equation for the conic that satisfies the given 
conditions.

31. Parabola,  vertex ,  focus 

32. Parabola,  focus ,  directrix 

33. Parabola,  focus ,  directrix 

34. Parabola,  focus ,  vertex 

35. Parabola,  vertex ,  vertical axis,
passing through 

36. Parabola,  horizontal axis,  
passing through , , and 

37. Ellipse,  foci ,  vertices 

38. Ellipse,  foci ,  vertices 

39. Ellipse,  foci , ,  vertices , 

40. Ellipse,  foci , ,  vertex 

41. Ellipse,  center ,  vertex ,  focus  

42. Ellipse,  foci ,  passing through 

43. Hyperbola,  vertices ,  foci 

44. Hyperbola,  vertices ,  foci 

45. Hyperbola,  vertices , ,  
foci , 

46. Hyperbola,  vertices , ,  
foci , 

47. Hyperbola,  vertices ,  asymptotes 

48. Hyperbola,  foci , , 
asymptotes and 

x 2 � y � 1 x 2 � y 2 � 1

x 2 � 4y � 2y 2 y 2 � 8y � 6x � 16

y 2 � 2y � 4x 2 � 3 4x 2 � 4x � y 2 � 0

�0, 0� �1, 0�

�0, 0� y � 6

��4, 0� x � 2

�3, 6� �3, 2�

�2, 3�
�1, 5�

��1, 0� �1, �1� �3, 1�

��2, 0� ��5, 0�

�0, �5� �0, �13�

�0, 2� �0, 6� �0, 0� �0, 8�

�0, �1� �8, �1� �9, �1�

��1, 4� ��1, 0� ��1, 6�

��4, 0� ��4, 1.8�

��3, 0� ��5, 0�

�0, �2� �0, �5�

��3, �4� ��3, 6�
��3, �7� ��3, 9�

��1, 2� �7, 2�
��2, 2� �8, 2�

��3, 0� y � �2x

�2, 0� �2, 8�
y � 3 �

1
2 x y � 5 �

1
2 x

y2 � 4x 2 � 2y � 16x � 31

4x 2 � y2 � 24x � 4y � 28 � 0

10.5 Exercises

1. Homework Hints available at stewartcalculus.com

97909_10_ch10_p676-685.qk_97909_10_ch10_p676-685  9/22/10  9:57 AM  Page 676



SECTION 10.5 CONIC SECTIONS 677

49. The point in a lunar orbit nearest the surface of the moon is
called perilune and the point farthest from the surface is called
apolune. The Apollo 11 spacecraft was placed in an elliptical
lunar orbit with perilune altitude 110 km and apolune altitude
314 km (above the moon). Find an equation of this ellipse if
the radius of the moon is 1728 km and the center of the moon
is at one focus.

50. A cross-section of a parabolic reflector is shown in the figure.
The bulb is located at the focus and the opening at the focus 
is 10 cm.
(a) Find an equation of the parabola.
(b) Find the diameter of the opening , 11 cm from 

the vertex.

51. In the LORAN (LOng RAnge Navigation) radio navigation
system, two radio stations located at and transmit simul ta-
neous signals to a ship or an aircraft located at . The onboard
computer converts the time difference in receiving these signals
into a distance difference , and this, according to
the definition of a hyperbola, locates the ship or aircraft on one
branch of a hyperbola (see the figure). Suppose that station B is
located 400 mi due east of station A on a coastline. A ship
received the signal from B 1200 micro seconds (�s) before it
received the signal from A.
(a) Assuming that radio signals travel at a speed of 980 ft �s,

find an equation of the hyperbola on which the ship lies.
(b) If the ship is due north of , how far off the coastline is 

the ship?

52. Use the definition of a hyperbola to derive Equation 6 for a
hyperbola with foci and vertices .

53. Show that the function defined by the upper branch of the
hyperbola is concave upward.

� CD �

5 cm

5 cm

A

B

C

D

V
F

11 cm

BA
P

� PA � � � PB �

�

B

400 mi
transmitting stations

coastlineA B

P

��a, 0���c, 0�

y 2�a 2 � x 2�b 2 � 1

54. Find an equation for the ellipse with foci and
and major axis of length 4.

55. Determine the type of curve represented by the equation

in each of the following cases: (a) , (b) , 
and (c) .
(d) Show that all the curves in parts (a) and (b) have the same

foci, no matter what the value of is.

56. (a) Show that the equation of the tangent line to the parabola 
at the point can be written as

(b) What is the -intercept of this tangent line? Use this fact to
draw the tangent line.

57. Show that the tangent lines to the parabola drawn
from any point on the directrix are perpendicular.

58. Show that if an ellipse and a hyperbola have the same foci,
then their tangent lines at each point of intersection are 
perpendicular.

59. Use parametric equations and Simpson’s Rule with to
estimate the circumference of the ellipse .

60. The planet Pluto travels in an elliptical orbit around the sun 
(at one focus). The length of the major axis is km
and the length of the minor axis is km. Use Simp-
son’s Rule with to estimate the distance traveled by the
planet during one complete orbit around the sun.

61. Find the area of the region enclosed by the hyperbola
and the vertical line through a focus.

62. (a) If an ellipse is rotated about its major axis, find the volume
of the resulting solid.

(b) If it is rotated about its minor axis, find the resulting
volume.

63. Find the centroid of the region enclosed by the -axis and the
top half of the ellipse .

64. (a) Calculate the surface area of the ellipsoid that is generated
by rotating an ellipse about its major axis.

(b) What is the surface area if the ellipse is rotated about its
minor axis?

65. Let be a point on the ellipse with
foci and and let and be the angles between the lines 

x 2

k
�

y 2

k � 16
� 1

��1, �1��1, 1�

0 � k � 16k � 16
k � 0

k

�x0, y0�y 2 � 4px

y0y � 2p�x � x 0�

x

x 2 � 4py

n � 8
9x 2 � 4y 2 � 36

1.18 � 1010

1.14 � 1010

n � 10

x 2�a 2 � y 2�b 2 � 1

x
9x 2 � 4y 2 � 36

x 2�a 2 � y 2�b 2 � 1P�x1, y1�
	
F2F1
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In the preceding section we defined the parabola in terms of a focus and directrix, but we
defined the ellipse and hyperbola in terms of two foci. In this section we give a more uni-
fied treatment of all three types of conic sections in terms of a focus and directrix. Further-
 more, if we place the focus at the origin, then a conic section has a simple polar equation,
which provides a convenient description of the motion of planets, satellites, and comets.

Theorem Let be a fixed point (called the focus) and be a fixed line (called
the directrix) in a plane. Let be a fixed positive number (called the eccentricity).
The set of all points in the plane such that

(that is, the ratio of the distance from to the distance from is the constant ) 
is a conic section. The conic is

(a) 

(b) 

(c) 

PROOF Notice that if the eccentricity is , then and so the given condi-
tion simply becomes the definition of a parabola as given in Section 10.5.

F l
e

P

� PF �
� Pl � � e

F l e

an ellipse if e � 1

a parabola if e � 1

1

a hyperbola if e � 1

� PF � � � Pl �e � 1

678 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

, and the ellipse as shown in the figure. Prove that
. This explains how whispering galleries and litho tripsy

work. Sound coming from one focus is reflected and passes
through the other focus. [Hint: Use the formula in Problem 19
on page 271 to show that .]

66. Let be a point on the hyperbola
with foci and and let and be the angles between 
the lines , and the hyperbola as shown in the figure.
Prove that . (This is the reflection property of the 

PF2PF1


 � 	

tan 
 � tan 	

F¡ F™0 x

y

∫

å

+    =1
≈

a@

¥

b@

P(⁄, ›)

x 2�a 2 � y 2�b 2 � 1P�x1, y1�
	
F2F1

PF2PF1


 � 	

hyperbola. It shows that light aimed at a focus of a hyper-
bolic mirror is reflected toward the other focus .)

0 x

y

å
∫

F™F¡

P

F™F¡

P

F2

F1

10.6 Conic Sections in Polar Coordinates
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SECTION 10.6 CONIC SECTIONS IN POLAR COORDINATES 679

Let us place the focus at the origin and the directrix parallel to the -axis and
units to the right. Thus the directrix has equation and is perpendicular to the

polar axis. If the point has polar coordinates , we see from Figure 1 that

Thus the condition , or , becomes

If we square both sides of this polar equation and convert to rectangular coordinates, 
we get

or

After completing the square, we have

If , we recognize Equation 3 as the equation of an ellipse. In fact, it is of the form

where

In Section 10.5 we found that the foci of an ellipse are at a distance from the center,
where

This shows that

and confirms that the focus as defined in Theorem 1 means the same as the focus defined
in Section 10.5. It also follows from Equations 4 and 5 that the eccentricity is given by

If , then and we see that Equation 3 represents a hyperbola. Just as we
did before, we could rewrite Equation 3 in the form

and see that

yF
x � dd

�r, ��P

� Pl � � d � r cos �� PF � � r

� PF � � e � Pl �� PF ��� Pl � � e

r � e�d � r cos ��2

x 2 � y 2 � e 2�d � x�2 � e 2�d 2 � 2dx � x 2 �

�1 � e 2 �x 2 � 2de 2x � y 2 � e 2d 2

�x �
e 2d

1 � e 2�2

�
y 2

1 � e 2 �
e 2d 2

�1 � e 2 �23

e � 1

�x � h�2

a 2 �
y 2

b 2 � 1

b 2 �
e 2d 2

1 � e 2a 2 �
e 2d 2

�1 � e 2 �2h � �
e 2d

1 � e 24

c

c 2 � a 2 � b 2 �
e 4d 2

�1 � e 2 �25

c �
e 2d

1 � e 2 � �h

e �
c

a

1 � e 2 � 0e � 1

�x � h�2

a 2 �
y 2

b 2 � 1

where c 2 � a 2 � b 2e �
c

a

FIGURE 1

y

x
F

l (directrix)

x=d

r cos ¨

P

¨

r

d

C
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680 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

By solving Equation 2 for , we see that the polar equation of the conic shown in Fig-
 ure 1 can be written as

If the directrix is chosen to be to the left of the focus as , or if the directrix is cho-
sen to be parallel to the polar axis as , then the polar equation of the conic is given
by the following theorem, which is illustrated by Figure 2. (See Exercises 21–23.)

Theorem A polar equation of the form

represents a conic section with eccentricity . The conic is an ellipse if , 
a parabola if , or a hyperbola if .

Find a polar equation for a parabola that has its focus at the origin and
whose directrix is the line .

SOLUTION Using Theorem 6 with and , and using part (d) of Figure 2, we
see that the equation of the parabola is

A conic is given by the polar equation

Find the eccentricity, identify the conic, locate the directrix, and sketch the conic.

SOLUTION Dividing numerator and denominator by 3, we write the equation as

r

r �
ed

1 � e cos �

x � �d
y � �d

FIGURE 2 
Polar equations of conics

(a) r=
ed

1+e cos ¨

y

xF

x=d

directrix

(b) r=
ed

1-e cos ¨

xF

y

x=_d

directrix

(c) r=
ed

1+e sin ¨

y

F x

y=d         directrix

(d) r=
ed

1-e sin ¨

x

y

y=_d         directrix

F

6

r �
ed

1 � e sin �
orr �

ed

1 � e cos �

e � 1e
e � 1 e � 1

EXAMPLE 1v
y � �6

d � 6e � 1

r �
6

1 � sin �

EXAMPLE 2v

r �
10

3 � 2 cos �

r �
10
3

1 �
2
3 cos �
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SECTION 10.6 CONIC SECTIONS IN POLAR COORDINATES 681

From Theorem 6 we see that this represents an ellipse with . Since , 
we have

so the directrix has Cartesian equation . When , ; when � ,
. So the vertices have polar coordinates and . The ellipse is sketched

in Figure 3.

Sketch the conic .

SOLUTION Writing the equation in the form

we see that the eccentricity is and the equation therefore represents a hyperbola.
Since , and the directrix has equation . The vertices occur when

and , so they are and . It is also useful to
plot the -intercepts. These occur when , ; in both cases . For additional
accuracy we could draw the asymptotes. Note that when or

and when . Thus the asymptotes are parallel to the rays
and . The hyperbola is sketched in Figure 4.

When rotating conic sections, we find it much more convenient to use polar equations
than Cartesian equations. We just use the fact (see Exercise 73 in Section 10.3) that the
graph of is the graph of rotated counterclockwise about the origin
through an angle .

If the ellipse of Example 2 is rotated through an angle about the ori-
gin, find a polar equation and graph the resulting ellipse.

SOLUTION We get the equation of the rotated ellipse by replacing with in the
equation given in Example 2. So the new equation is

We use this equation to graph the rotated ellipse in Figure 5. Notice that the ellipse has
been rotated about its left focus.

ed � 10
3e � 2

3

d �
10
3

e
�

10
3
2
3

� 5

��r � 10� � 0x � �5
�2, ���10, 0�r � 2

r �
12

2 � 4 sin �
EXAMPLE 3

r �
6

1 � 2 sin �

e � 2
y � 3d � 3ed � 6

��6, 3��2� � �6, ��2��2, ��2�3��2� � ��2
r � 6�� � 0x

1 � 2 sin � l 0�r l �
sin � � �

1
21 � 2 sin � � 00�

� � 11��6� � 7��6

FIGURE 4

r=
12

2+4 sin ¨

x0

y

(6, π) (6, 0)

y=3 (directrix)

focus

”2,    ’
π
2

”6,    ’
π
2

r � f ���r � f �� � 
�



��4EXAMPLE 4v

� � ��4�

r �
10

3 � 2 cos�� � ��4�

FIGURE 3

y

0 x

r=
10

3-2 cos ̈x=_5

(directrix)

(10, 0)

(2, π)

focus

FIGURE 5

11

_6

_5 15

r= 10
3-2 cos(¨-π/4)

r=
10

3-2 cos ̈
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In Figure 6 we use a computer to sketch a number of conics to demonstrate the effect of
varying the eccentricity . Notice that when is close to 0 the ellipse is nearly circular,
whereas it becomes more elongated as . When , of course, the conic is a
parabola.

Kepler’s Laws
In 1609 the German mathematician and astronomer Johannes Kepler, on the basis of huge
amounts of astronomical data, published the following three laws of planetary motion.

Kepler’s Laws

1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of
the length of the major axis of its orbit.

Although Kepler formulated his laws in terms of the motion of planets around the sun,
they apply equally well to the motion of moons, comets, satellites, and other bodies that
orbit subject to a single gravitational force. In Section 13.4 we will show how to deduce
Kepler’s Laws from Newton’s Laws. Here we use Kepler’s First Law, together with the
polar equation of an ellipse, to calculate quantities of interest in astronomy.

For purposes of astronomical calculations, it’s useful to express the equation of an ellipse
in terms of its eccentricity and its semimajor axis . We can write the distance from the
focus to the directrix in terms of if we use :

So . If the directrix is , then the polar equation is

ee
e � 1e l 1�

FIGURE 6

e=1 e=1.1 e=1.4 e=4

e=0.96e=0.86e=0.68e=0.1 e=0.5

dae
4a

a2 �
e2d 2

�1 � e 2�2 ? d 2 �
a 2�1 � e2�2

e2 ? d �
a�1 � e2�

e

x � ded � a�1 � e2�

r �
ed

1 � e cos �
�

a�1 � e2�
1 � e cos �
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The polar equation of an ellipse with focus at the origin, semimajor axis ,
eccentricity , and directrix can be written in the form

The positions of a planet that are closest to and farthest from the sun are called its peri-
helion and aphelion, respectively, and correspond to the vertices of the ellipse. (See 
Figure 7.) The distances from the sun to the perihelion and aphelion are called the peri-
helion distance and aphelion distance, respectively. In Figure 1 the sun is at the focus ,
so at perihelion we have and, from Equation 7,

Similarly, at aphelion and .

The perihelion distance from a planet to the sun is and the aphelion
distance is .

(a) Find an approximate polar equation for the elliptical orbit of the earth around the sun
(at one focus) given that the eccentricity is about and the length of the major axis
is about .
(b) Find the distance from the earth to the sun at perihelion and at aphelion.

SOLUTION
(a) The length of the major axis is , so . We are given
that and so, from Equation 7, an equation of the earth’s orbit around the sun is

or, approximately,

(b) From , the perihelion distance from the earth to the sun is

and the aphelion distance is

a7
x � de

r �
a�1 � e2�

1 � e cos �

F
� � 0

r �
a�1 � e2�

1 � e cos 0
�

a�1 � e��1 � e�
1 � e

� a�1 � e�

r � a�1 � e�� � �

a�1 � e�8
a�1 � e�

0.017
2.99 � 108 km

a � 1.495 � 1082a � 2.99 � 108

e � 0.017

r �
a�1 � e2�

1 � e cos �
�

�1.495 � 108� �1 � �0.017�2	
1 � 0.017 cos �

r �
1.49 � 108

1 � 0.017 cos �

a�1 � e� 
 �1.495 � 108��1 � 0.017� 
 1.47 � 108 km

a�1 � e� 
 �1.495 � 108��1 � 0.017� 
 1.52 � 108 km

EXAMPLE 5

8

perihelionaphelion
sun

planet

¨
r

FIGURE 7 
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684 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

1–8 Write a polar equation of a conic with the focus at the origin
and the given data.

1. Ellipse,  eccentricity ,  directrix 

2. Parabola,  directrix 

3. Hyperbola,  eccentricity 1.5,  directrix 

4. Hyperbola,  eccentricity 3,  directrix 

5. Parabola,  vertex 

6. Ellipse,  eccentricity ,  vertex 

7. Ellipse,  eccentricity ,  directrix 

8. Hyperbola,  eccentricity 3,  directrix 

9–16 (a) Find the eccentricity, (b) identify the conic, (c) give an
equation of the directrix, and (d) sketch the conic.

9. 10.

11. 12.

13. 14.

15. 16.

; 17. (a) Find the eccentricity and directrix of the conic
and graph the conic and its directrix.

(b) If this conic is rotated counterclockwise about the origin
through an angle , write the resulting equation and
graph its curve.

; 18. Graph the conic and its directrix. Also
graph the conic obtained by rotating this curve about the ori-
gin through an angle .

; 19. Graph the conics with , , 
, and on a common screen. How does the value of

affect the shape of the curve?

; 20. (a) Graph the conics for and var-
ious values of . How does the value of affect the shape
of the conic?

(b) Graph these conics for and various values of .
How does the value of affect the shape of the conic?

21. Show that a conic with focus at the origin, eccentricity , and
directrix has polar equation

x � �3

y � 2

x � 3

�4, 3��2�

0.8 �1, ��2�
1
2 r � 4 sec �

r � �6 csc �

1
2 x � 4

r �
4

5 � 4 sin �
r �

12

3 � 10 cos �

r �
2

3 � 3 sin �
r �

3

2 � 2 cos �

r �
9

6 � 2 cos �
r �

8

4 � 5 sin �

r �
3

4 � 8 cos �
r �

10

5 � 6 sin �

r � 1��1 � 2 sin ��

3��4

r � 4��5 � 6 cos ��

��3

r � e��1 � e cos � � e � 0.4 0.6
0.8 1.0 e

r � ed��1 � e sin �� e � 1
d d

d � 1 e
e

e
x � �d

r �
ed

1 � e cos �

22. Show that a conic with focus at the origin, eccentricity , and
directrix has polar equation

23. Show that a conic with focus at the origin, eccentricity , and
directrix has polar equation

24. Show that the parabolas and
intersect at right angles.

25. The orbit of Mars around the sun is an ellipse with eccen-
tricity and semimajor axis . Find a polar
equation for the orbit.

26. Jupiter’s orbit has eccentricity and the length of the
major axis is . Find a polar equation for the
orbit.

27. The orbit of Halley’s comet, last seen in 1986 and due to 
return in 2062, is an ellipse with eccentricity 0.97 and one
focus at the sun. The length of its major axis is 36.18 AU. 
[An astronomical unit (AU) is the mean distance between the
earth and the sun, about 93 million miles.] Find a polar equa-
tion for the orbit of Halley’s comet. What is the maximum
distance from the comet to the sun?

28. The Hale-Bopp comet, discovered in 1995, has an elliptical
orbit with eccentricity 0.9951 and the length of the major
axis is 356.5 AU. Find a polar equation for the orbit of this
comet. How close to the sun does it come?

29. The planet Mercury travels in an elliptical orbit with eccen-
tricity . Its minimum distance from the sun is 

km. Find its maximum distance from the sun.

30. The distance from the planet Pluto to the sun is 
km at perihelion and km at aphelion.

Find the eccentricity of Pluto’s orbit.

31. Using the data from Exercise 29, find the distance traveled by
the planet Mercury during one complete orbit around the sun.
(If your calculator or computer algebra system evaluates defi-
nite integrals, use it. Otherwise, use Simpson’s Rule.)

e
y � d

r �
ed

1 � e sin �

e
y � �d

r �
ed

1 � e sin �

r � c��1 � cos ��
r � d��1 � cos ��

0.093 2.28 � 108 km

0.048
1.56 � 109 km

0.206
4.6 � 107

4.43 � 109 7.37 � 109

10.6 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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CHAPTER 10 REVIEW 685

10 Review

1. (a) What is a parametric curve?
(b) How do you sketch a parametric curve?

2. (a) How do you find the slope of a tangent to a parametric
curve?

(b) How do you find the area under a parametric curve?

3. Write an expression for each of the following:
(a) The length of a parametric curve
(b) The area of the surface obtained by rotating a parametric

curve about the 

4. (a) Use a diagram to explain the meaning of the polar coordi-
nates of a point.

(b) Write equations that express the Cartesian coordinates 
of a point in terms of the polar coordinates.

(c) What equations would you use to find the polar coordi nates
of a point if you knew the Cartesian coordinates?

5. (a) How do you find the slope of a tangent line to a polar
curve?

(b) How do you find the area of a region bounded by a polar
curve?

(c) How do you find the length of a polar curve?

x-axis

�r, ��

�x, y�

6. (a) Give a geometric definition of a parabola.
(b) Write an equation of a parabola with focus and direc-

trix . What if the focus is and the directrix 
is ?

7. (a) Give a definition of an ellipse in terms of foci.
(b) Write an equation for the ellipse with foci and 

vertices .

8. (a) Give a definition of a hyperbola in terms of foci.
(b) Write an equation for the hyperbola with foci and

vertices .
(c) Write equations for the asymptotes of the hyperbola in

part (b).

9. (a) What is the eccentricity of a conic section?
(b) What can you say about the eccentricity if the conic section

is an ellipse? A hyperbola? A parabola?
(c) Write a polar equation for a conic section with eccentricity

and directrix . What if the directrix is ?
? ?

�0, p�
y � �p �p, 0�

x � �p

��c, 0�
��a, 0�

��c, 0�
��a, 0�

e x � d x � �d
y � d y � �d

Concept Check

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. If the parametric curve , satisfies ,
then it has a horizontal tangent when .

2. If and are twice differentiable, then

3. The length of the curve , , , is
.

4. If a point is represented by in Cartesian coordinates
(where ) and in polar coordinates, then

.

x � f �t� y � t�t� t��1� � 0
t � 1

y � t�t�x � f �t�

d 2y

dx 2 �
d 2y�dt 2

d 2x�dt 2

a � t � by � t�t�x � f �t�
x

b
a s� f ��t�	 2 � �t��t�	 2 dt

�x, y�
�r, ��x � 0

� � tan �1� y�x�

5. The polar curves and have the
same graph.

6. The equations , , and ,
all have the same graph.

7. The parametric equations , have the same graph
as , .

8. The graph of is a parabola.

9. A tangent line to a parabola intersects the parabola only once.

10. A hyperbola never intersects its directrix.

r � 2 x 2 � y 2 � 4 x � 2 sin 3t
y � 2 cos 3t �0 � t � 2��

x � t 2 y � t 4

x � t 3 y � t 6

y 2 � 2y � 3x

r � sin 2� � 1r � 1 � sin 2�

True-False Quiz
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; Graphing calculator or computer required Computer algebra system requiredCAS

1–4 Sketch the parametric curve and eliminate the parameter to
find the Cartesian equation of the curve.

1. ,  ,  

2. ,  

3. ,  ,  

4. ,  

5. Write three different sets of parametric equations for the 
curve .

6. Use the graphs of  and to sketch the para-
metric curve , . Indicate with arrows the 
direction in which the curve is traced as increases.

7. (a) Plot the point with polar coordinates . Then find
its Cartesian coordinates.

(b) The Cartesian coordinates of a point are . Find two
sets of polar coordinates for the point.

8. Sketch the region consisting of points whose polar coor-
dinates satisfy .

9–16 Sketch the polar curve.

9. 10.

11. 12.

13. 14.

15. 16.

17–18 Find a polar equation for the curve represented by the
given Cartesian equation.

17. 18.

; 19. The curve with polar equation is called a
cochleoid. Use a graph of as a function of in Cartesian
coordinates to sketch the cochleoid by hand. Then graph it
with a machine to check your sketch.

; 20. Graph the ellipse and its directrix. 
Also graph the ellipse obtained by rotation about the origin
through an angle .

�4 � t � 1y � 2 � tx � t 2 � 4t

y � e tx � 1 � e 2 t

0 � � � ��2y � sec �x � cos �

y � 1 � sin �x � 2 cos �

y � sx

y � t�t�x � f �t�
y � t�t�x � f �t�

t

t

x

_1

1 t

y

1

1

�4, 2��3�

��3, 3�

1 � r � 2 and ��6 � � � 5��6

r � sin 4�r � 1 � cos �

r � 3 � cos 3�r � cos 3 �

r � 2 cos���2�r � 1 � cos 2�

r �
3

2 � 2 cos �
r �

3

1 � 2 sin �

x 2 � y 2 � 2x � y � 2

r � �sin � ���
�r

r � 2��4 � 3 cos � �

2��3

21–24 Find the slope of the tangent line to the given curve at the
point corresponding to the specified value of the parameter.

21. , ;  

22. ,  ;  

23. ;  

24. ;  

25–26 Find and .

25. ,  

26. ,  

; 27. Use a graph to estimate the coordinates of the lowest point on
the curve , .  Then use calculus to
find the exact coordinates.

28. Find the area enclosed by the loop of the curve in Exercise 27.

29. At what points does the curve

have vertical or horizontal tangents? Use this information to
help sketch the curve.

30. Find the area enclosed by the curve in Exercise 29.

31. Find the area enclosed by the curve .

32. Find the area enclosed by the inner loop of the curve
.

33. Find the points of intersection of the curves and
.

34. Find the points of intersection of the curves and
.

35. Find the area of the region that lies inside both of the circles
and .

36. Find the area of the region that lies inside the curve
but outside the curve .

37–40 Find the length of the curve.

37. ,  ,  

38. ,  ,  

39. ,  

40. ,  

x � ln t y � 1 � t 2 t � 1

x � t 3 � 6t � 1 y � 2t � t 2 t � �1

r � e �� � � �

r � 3 � cos 3� � � ��2

dy�dx d 2 y�dx 2

x � t � sin t y � t � cos t

x � 1 � t 2 y � t � t 3

x � t 3 � 3t y � t 2 � t � 1

x � 2a cos t � a cos 2t y � 2a sin t � a sin 2t

r 2 � 9 cos 5�

r � 1 � 3 sin �

r � 2
r � 4 cos �

r � cot �
r � 2 cos �

r � 2 sin � r � sin � � cos �

r � 2 � cos 2� r � 2 � sin �

x � 3t 2 y � 2t 3 0 � t � 2

x � 2 � 3t y � cosh 3t 0 � t � 1

r � 1�� � � � � 2�

r � sin3���3� 0 � � � �

Exercises
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CHAPTER 10 REVIEW 687

41–42 Find the area of the surface obtained by rotating the given
curve about the -axis.

41. ,  ,  

42. ,  ,  

; 43. The curves defined by the parametric equations

are called strophoids (from a Greek word meaning “to turn
or twist”). Investigate how these curves vary as varies.

; 44. A family of curves has polar equations where 
is a positive number. Investigate how the curves change as 
changes.

45–48 Find the foci and vertices and sketch the graph.

45. 46.

47.

48.

49. Find an equation of the ellipse with foci and vertices
.

50. Find an equation of the parabola with focus and direc-
trix .

51. Find an equation of the hyperbola with foci and
asymptotes .

52. Find an equation of the ellipse with foci and major
axis with length 8.

x

x � 4st y �
t 3

3
�

1

2t 2 1 � t � 4

x � 2 � 3t y � cosh 3t 0 � t � 1

x �
t 2 � c

t 2 � 1
y �

t�t 2 � c�
t 2 � 1

c

r a � � sin 2� �
a
a

x 2

9
�

y 2

8
� 1 4x 2 � y 2 � 16

6y 2 � x � 36y � 55 � 0

25x 2 � 4y 2 � 50x � 16y � 59

��4, 0�
��5, 0�

�2, 1�
x � �4

�0, �4�
y � �3x

�3, �2�

53. Find an equation for the ellipse that shares a vertex and a
focus with the parabola and that has its other
focus at the origin.

54. Show that if is any real number, then there are exactly 
two lines of slope that are tangent to the ellipse

and their equations are
.

55. Find a polar equation for the ellipse with focus at the origin,
eccentricity .

56. Show that the angles between the polar axis and the 
asymptotes of the hyperbola , , 
are given by .

57. A curve called the folium of Descartes is defined by the
parametric equations

(a) Show that if lies on the curve, then so does ;
that is, the curve is symmetric with respect to the line 

. Where does the curve intersect this line?
(b) Find the points on the curve where the tangent lines are

horizontal or vertical.
(c) Show that the line is a slant asymptote.
(d) Sketch the curve.
(e) Show that a Cartesian equation of this curve is

.
(f ) Show that the polar equation can be written in the form

(g) Find the area enclosed by the loop of this curve.
(h) Show that the area of the loop is the same as the area that

lies between the asymptote and the infinite branches of
the curve. (Use a computer algebra system to evaluate 
the integral.)

y � x

y � �x � 1

x 3 � y 3 � 3xy

r �
3 sec � tan �

1 � tan3�

CAS

x 2 � y � 100

m
m

x 2�a 2 � y 2�b 2 � 1
y � mx � sa 2m 2 � b 2

1
3, and directrix with equation r � 4 sec �

e 	 1r � ed��1 � e cos ��
cos�1��1�e�

x �
3t

1 � t 3 y �
3t 2

1 � t 3

�b, a��a, b�
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Problems Plus
1. A curve is defined by the parametric equations

Find the length of the arc of the curve from the origin to the nearest point where there is a verti-
cal tangent line.

2. (a) Find the highest and lowest points on the curve .
(b) Sketch the curve. (Notice that it is symmetric with respect to both axes and both of the lines

, so it suffices to consider initially.)
(c) Use polar coordinates and a computer algebra system to find the area enclosed by the curve.

; 3. What is the smallest viewing rectangle that contains every member of the family of polar curves
, where ? Illustrate your answer by graphing several members of the

family in this viewing rectangle.

4. Four bugs are placed at the four corners of a square with side length . The bugs crawl counter-
clockwise at the same speed and each bug crawls directly toward the next bug at all times. They
approach the center of the square along spiral paths.
(a) Find the polar equation of a bug’s path assuming the pole is at the center of the square. (Use

the fact that the line joining one bug to the next is tangent to the bug’s path.)
(b) Find the distance traveled by a bug by the time it meets the other bugs at the center.

5. Show that any tangent line to a hyperbola touches the hyperbola halfway between the points of
intersection of the tangent and the asymptotes.

6. A circle of radius has its center at the origin. A circle of radius rolls without slipping in
the counterclockwise direction around . A point is located on a fixed radius of the rolling
circle at a distance from its center, . [See parts (i) and (ii) of the figure.] Let be
the line from the center of to the center of the rolling circle and let be the angle that
makes with the positive -axis.
(a) Using as a parameter, show that parametric equations of the path traced out by are

Note: If , the path is a circle of radius ; if , the path is an epicycloid. The path
traced out by for is called an epitrochoid.

; (b) Graph the curve for various values of between and .

(c) Show that an equilateral triangle can be inscribed in the epitrochoid and that its centroid is
on the circle of radius centered at the origin.

Note: This is the principle of the Wankel rotary engine. When the equilateral triangle rotates
with its vertices on the epitrochoid, its centroid sweeps out a circle whose center is at the
center of the curve.

(d) In most rotary engines the sides of the equilateral triangles are replaced by arcs of circles
centered at the opposite vertices as in part (iii) of the figure. (Then the diameter of the rotor
is constant.) Show that the rotor will fit in the epitrochoid if .

x � y
t

1

cos u

u
du y � y

t

1

sin u

u
du

x 4 � y 4 � x 2 � y 2

y 
 x 
 0y � �x
CAS

0 � c � 1r � 1 � c sin �

a

r2rC
PC

L0 � b � rb
L�C

x
P�

x � b cos 3� � 3r cos � y � b sin 3� � 3r sin �

b � r3rb � 0
0 � b � rP

r0b

b

b �
3
2 (2 � s3 )r

(ii)

y

xP¸
¨

P

y

x

r

b

P=P¸

2r

(i) (iii)

688

a

a a

a

FIGURE FOR PROBLEM 4
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