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Lovász had posed a question stating whether every connected, vertex-transitive graph
has a Hamilton path in 1969. There is a growing interest in solving this longstanding
problem and still it remains widely open. In fact, it was known that only five vertex-
transitive graphs exist without a Hamiltonian cycle which do not belong to Cayley
graphs. A Cayley graph is the subclass of vertex-transitive graph, and in view of the
Lovász conjecture, the attention has focused more toward the Hamiltonicity of Cayley
graphs. This survey will describe the current status of the search for Hamiltonian cycles
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and paths in Cayley graphs and digraphs on different groups, and discuss the future
direction regarding famous conjecture.

Keywords: Cayley graph and digraph; vertex-transitive graph; Hamiltonian paths and
cycles.
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1. Introduction

Precisely, a Hamiltonian path is a path that visits every vertex of a graph exactly
once. If there is an edge between the starting and ending point of a Hamiltonian
path then it is a Hamiltonian cycle. The general problem of finding the existence of a
Hamiltonian cycle is, the well-known Hamiltonicity problem. The problem of finding
Hamiltonian cycles in graphs can be studied in all kind of graphs, and this survey
deals with the Lovász conjecture about the existence of Hamiltonian paths and
cycles in the special case of vertex-transitive graphs called Cayley graphs. In 1878,
Arthur Cayley had introduced Cayley graphs to explain the concept of abstract
groups which are described by a set of generators.

Definition 1.0.1. The Cayley graph Cay(G, S) of a group G with respect to the
generating set S(⊂ G) is defined to be the undirected graph in which the vertex
set is given by the elements of G and the edge set is given by {{g, g.s} | g ∈ G, s ∈
(S ∪ S−1)\{e}}.

Similarly a directed graph is called the Cayley digraph of G with generating set

S,
→

Cay (G; S), if each element of G is a vertex of
→

Cay (G; S), and for all x, y ∈ G

there is an arc from x to y if and only if xs = y for some s ∈ S.

The well-known conjecture that every Cayley graph on a finite group of order,
at least, three has a Hamiltonian cycle is still open and it was proven to be true for
Cayley graphs on certain class of groups. Many attempts utilizing different solving
techniques (such as [2, 45]) have been made; it was even proven that almost all
Cayley graphs are Hamiltonian [26], but a complete solution is yet to be found.

Most of the results about the conjecture on Cayley graphs were first surveyed in
1984 by Witte and Gallian [50]. Furthermore, in 1996 results on Hamiltonian cycles
and paths in Cayley graphs and digraphs were surveyed by Curran and Gallian [15]
which provide ample background on previous work.

It is important to determine which groups with which generating sets have
Hamiltonian paths and cycles. According to the previous survey results, the prob-
lem was solved for all Cayley graphs on abelian groups, but it was not yet proven on
all non-abelian groups. Especially, dihedral groups are considered to be important
in the search for Hamiltonian cycles in Cayley graphs on finite groups since there
has been little progress made to generalize the results on Cayley graphs of dihe-
dral groups. In the case of p-groups, Witte had proven in general that a connected
Cayley digraph of any p-group has a Hamiltonian cycle.
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Today, the constant stream of results in this area continues to provide with new
and interesting theorems and still further questions. Since this area is so vast, in
this survey the main results on Cayley graphs and digraphs of important groups
will be covered. Therefore, the main objective of the survey is to provide a better
picture of the famous conjecture on Hamiltonian paths and cycles in Cayley graphs,
as it exists today.

2. Abelian Groups

If Hamiltonicity results of Cayley digraphs on abelian group are considered, it was
already proven by Gallian [18] that Cayley digraph on abelian group has Hamil-
tonian path for any nonempty generating set, using the proof by induction on the
number of elements in the generating set. However, some connected Cayley digraphs
on abelian group do not have a Hamiltonian cycle. For example, when the Cayley

digraph
→

Cay (Z12; 3, 4) is considered it does not have a Hamiltonian cycle.

Suppose H is a Hamiltonian cycle of the Cayley digraph
→

Cay (Z12; 3, 4). If a
vertex x of the Cayley digraph travels by 4, then the adjacent vertex x + 1 cannot
travel by 3 due to the collision at x + 4. So, x + 1 must travel by 4. Therefore, by
induction, every vertex travels by 4. Also, if no vertex travels by 4 then it implies all

travel by 3. Hence no Hamiltonian cycle exists in Cayley digraph
→

Cay (Z12; 3, 4).
The “valency” or the “degree” of a vertex of a graph is the number of edges

incident to the vertex with loops counted twice. The “maximum/minimum valency”
of a graph is the maximum/minimum valency of its vertices. For a regular graph
(X), the valency of all the vertices are equal and hence the maximum valency is the
same as the minimum valency which can simply be called as the “valency” of the
graph (val(X)).

Two main properties that can be present in a Hamiltonian graph are Hamilton-
connectedness and Hamilton-laceability. A graph X is Hamilton-connected if every
two vertices of X are connected by a Hamiltonian path [11]. A graph X is Hamilton-
laceable if it is bipartite and there is a Hamiltonian path between every pair of
vertices that are in different partite sets.

In 1981, Chen and Quimpo have proven the following very remarkable theorem
regarding the Hamilton-connectedness and Hamilton-laceability of Cayley graphs
of abelian groups.

Theorem 2.0.1 ([13]). Let X be a connected Cayley graph on an abelian group.
If val(X) = 2, X is a cycle. If val(X) > 2, then

(1) X is Hamilton-connected if X is not bipartite.
(2) X is Hamilton-laceable if X is bipartite.

In 1985, Alspach [1] has conjectured the existence of k Hamiltonian cycles in
any 2k-regular connected Cayley graph Cay(G; S) on a finite abelian group G.
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Partially answering Alspach’s conjecture, Bermond et al. in [10] have proven that
any 4-regular connected Cayley graph on a finite abelian group can be decomposed
into two Hamiltonian cycles, and Westlund has presented Hamilton decomposable
6-regular abelian Cayley graphs in [48].

Moreover, Liu has proven the Theorems 2.0.2 and 2.0.3 for the existence of
Hamilton decompositions in 2k-regular connected Cayley graphs on abelian groups
in 1996 and 2003, respectively.

Theorem 2.0.2 ([32]). If G is an abelian group of odd order and S =
{s1, s2, . . . , sk} is a minimal generating set of G, then Cay(G; S) has a Hamiltonian
decomposition.

Theorem 2.0.3 ([33]). If G is a finite abelian group of even order at least 4 and
S = {s1, s2, . . . , sk} is a strongly minimal generating set of G, then Cay(G; S) has
a Hamiltonian decomposition.

2.1. Circulant graphs

Circulant graphs are Cayley graphs over a cyclic group [9] (mostly circulant graphs
will be denoted as Cn or Zn or Circ(n)).

From previous survey results, it is well known that every circulant graph has a
Hamiltonian cycle and in [24] Heus had proven that if G is a group equal to the
product of cyclic groups, then G has at least one Hamiltonian Cayley graph.

Proposition 2.1.1 ([24]). The cartesian product Cn1 × · · · × Cnk
of k cycles is

Hamiltonian.

The Cartesian product Cn1×· · ·×Cnk
of k cycles can be seen as an n1×n2×· · ·×

nk grid where the vertex (i1, . . . , ik) is adjacent only to the vertices (i1 ± 1 mod n1,
i2, . . . , ik), (i1, i2±1 mod n2, . . . , ik), . . . , (i1, i2, . . . , ik ±1 mod nk). The proof was
done by induction to k.

Although every connected circulant digraphs have been proven to possess a
Hamiltonian path, the analogous result is not proven in the case of Hamiltonian
cycles. Hamiltonian property of directed circulant graphs can be addressed by the
following question.

Question 2.1.2. Do the Cayley digraphs of the additive group Zn with respect to

any generating set S(
→

Cay (Zn; S)) have a Hamiltonian cycle?

Proposition 2.1.3 ([38]). Assume G = 〈a, b〉 is abelian. Then there is a Hamilto-

nian cycle in
→

Cay (G; a, b) if and only if there exist k, l ≥ 0 such that 〈akbl〉 = 〈ab−1〉
and k + l = |G : 〈ab−1〉|.

Example ([38]). If gcd(a, n) > 1 and gcd(a + 1, n) > 1, then
→

Cay (Zn; a, a + 1)
does not have a Hamiltonian cycle.

Proposition 2.1.3 can provide several examples of non-Hamiltonian circulant
digraphs with generating set having two elements.
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Question 2.1.4. Do the circulant graphs with respect to three elements generating
set (Circ(n; a, b, c)) have a Hamiltonian cycle?

Locke and Morris in [34] have provided the answer to the above question. They
have shown that the following Cayley digraphs are the examples of connected, non-

Hamiltonian circulant digraphs
→

Cay (G; S), such that cardinality of generating set
S > 2 and the identity element of group e /∈ S.

•
→

Cay (Z12k; 6k, 6k + 2, 6k + 3) for any k ∈ Z
+,

•
→

Cay (Z2k; a, b, b + k) for a, b, k ∈ Z
+ iff gcd(a, b, k) �= 1 or,

— gcd(a − b, k) = 1; and
— gcd(a, 2k) �= 1; and
— gcd(b, k) �= 1; and
— either a or k is odd; and
— a is even, or both b and k are even.

Proposition 2.1.5 by Morris in [38] too provides existence of non-Hamiltonian
circulant digraphs with generating set having three elements. Furthermore, [41]
highlights the cases where there exists a non-Hamiltonian (2, 3, c)-circulant digraph,
while proving the existence of a Hamiltonian cycle for the remaining cases.

Proposition 2.1.5 ([38]). Let G be an abelian group (written additively) and let
a, b, k ∈ G, such that k is an element of order 2 (also assume {a, b, b + k} consists

of three distinct, nontrivial elements of G). If the Cayley digraph
→

Cay (G; a, b, b+k)
is connected, but does not have a Hamiltonian cycle, then G is cyclic.

Morris had proven contrapositive of the result by assuming that G is not cyclic
and shown that the Cayley digraph has a Hamiltonian cycle (if it is connected).

Furthermore, the existence of Hamilton decompositions in several 2k-valent infi-
nite circulant graphs was proven very recently in [12] of 2018. However, the case of
circulant digraphs is still open since the existence of Hamiltonian cycle is not yet
proven for all generating sets having elements greater than 3.

3. Dihedral Groups

3.1. Generalized Dihedral groups

Definition 3.1.1 ([4]). Let H be a finite abelian group. The generalized dihedral
group DH is the group of order 2|H | generated by H and τ where τ /∈ H, τ2 = 1
and τhτ = h−1, for all h ∈ H .

The dihedral groups are special cases of generalized dihedral groups DH when
H is a cyclic group.

Definition 3.1.2 ([4]). A family F of graphs is H∗-connected when every non-
bipartite graph in F is Hamilton-connected and every bipartite graph in F is
Hamilton-laceable.
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Dihedral group D2n of order 2n contains elements with n rotations {ti : 0 ≤
i ≤ n − 1} and n reflections {fti : 0 ≤ i ≤ n − 1} which is given by the repre-
sentation D2n = 〈t, f | tn = e, f2 = e, ftf = t−1〉. It can be easily shown that
Cay(D2n, {f, t}) is Hamiltonian, however it has been difficult to prove in general
that Cayley graph on D2n with generating set consisting of all the reflections has
Hamiltonian cycle. Recently, Alspach et al. in [4] have proven the Theorem 3.1.3 on
generalized dihedral groups, by showing that every Cayley graph on the dihedral
group D2n when n being even has a Hamiltonian cycle.

Theorem 3.1.3 ([4]). The family of connected Cayley graphs of valency at least 3
on generalized dihedral groups, whose orders are divisible by 4, is an H∗-connected
family.

The following are the consequent results obtained from the above theorem.

Corollary 3.1.4 ([4]). If X is a connected Cayley graph on the dihedral group Dn,

n even, then X has a Hamiltonian cycle.

Corollary 3.1.5 ([4]). Every edge of a connected Cayley graph on a dihedral group
Dn, n even, lies in a Hamiltonian cycle.

In previous survey results it was mentioned that Witte in 1982 has obtained
the generalized results of Cayley digraphs on dihedral groups upto the extent of
Theorem 3.1.6.

Theorem 3.1.6. If
→

Cay (DH ; S ∩ H) is Hamiltonian, then
→

Cay (DH ; S) is also
Hamiltonian.

Pastine and Jaume in [44] have generalized the results on Cayley graphs on
dihedral groups and proven the following theorem.

Theorem 3.1.7. Given a generalized dihedral group DH and a generating subset

S, if S ∩ H �= φ, then the Cayley digraph
→

Cay (DH ; S) is Hamiltonian.

It was proven by a recursive algorithm that produces a Hamiltonian circuit in
the digraph.

Moreover, in [25] the authors have proven that, every connected Cayley graph
on D2p, where p is a prime has a Hamiltonian cycle and in [52], a Hamiltonian
decomposition of the Cayley graph on D2p was presented.

4. Special-Order Groups

Most of the research works since 1995, includes the Hamiltonicity results on Cay-
ley digraphs on groups of special order. One of the remarkable results by Witte is
that every Cayley digraph of an arbitrary p-group, p a prime, is Hamiltonian. Com-
bining this result with the result proven by Marušič, it can be stated that every
connected vertex-transitive graph of order pk, p a prime and k ≤ 3, is Hamiltonian.
Furthermore, by generalizing the results of Witte and Marušič, Chen had proven
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that every connected vertex-transitive graph and digraph of order p4, p a prime, is
Hamiltonian. The following is strongest structural result by Keating and Witte.

Theorem 4.0.1 ([28]). There is a Hamilton cycle in every Cayley graph in a group
whose commutator subgroup is cyclic of prime-power order.

If recent results in [43] are considered, Pak and Radoičić have recently proven
the following theorem based on the Cayley graph of a group with special generating
set.

Theorem 4.0.2 ([43]). Every finite group G of size |G| ≥ 3 has a generating set S

of size |S| ≤ log2|G|, such that the corresponding Cayley graph Cay(G; S) contains
a Hamiltonian cycle.

Kutnar et al. in [31] has shown the following theorem for Cayley graphs on
groups whose order has few prime factors.

Theorem 4.0.3 ([31]). Let G be a finite group. Every connected Cayley graph on
G has a Hamiltonian cycle if |G| has any of the following forms (where p, q, and r

are distinct primes):

• kp, where 1 ≤ k < 32, with k �= 24,

• kpq, where 1 ≤ k ≤ 5,

• pqr,

• kp2, where 1 ≤ k ≤ 4,

• kp3, where 1 ≤ k ≤ 2.

The comprehensive study of the conjecture in the case of Cayley graphs for which
the number of vertices has a prime factorization provides the following result. Every
connected Cayley graph on G has a Hamiltonian cycle if

• |G| = 16p, where p is prime [16]
• |G| = 27p, 30p, where p is prime [19, 20].

Combining above results and Theorem 4.0.3 with the recent result in [42] estab-
lishes that, if |G| = kp, where p is a prime, with 1 ≤ k ≤ 47 then every connected
Cayley graph on G has a Hamiltonian cycle. In [42] a computer-assisted proof is
presented and the following two independent results were also proven.

Corollary 4.0.4 ([42]). If |G| < 144 (and |G| > 2), then every connected Cayley
graph on G is Hamiltonian.

Proposition 4.0.5 ([42]). If |G| < 48, then every connected Cayley graph on G

is either Hamiltonian connected or Hamiltonian laceable (or has valence ≤ 2).

Moreover, the following two theorems proved by Dave Witte Morris state the
existence of a Hamiltonian cycle in Cayley graphs of a finite group G, based on the
order of its commutator subgroup, [G, G].
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Theorem 4.0.6 ([37]). If G is a nontrivial, finite group of odd order, whose com-
mutator subgroup [G, G] is cyclic of order pµqυ, where p and q are prime, and
µ, υ ∈ N, then every connected Cayley graph on G has a Hamiltonian cycle.

Theorem 4.0.7 ([40]). If the commutator subgroup of G has order 2p, where p is
an odd prime, then every connected Cayley graph on G has a Hamiltonian cycle.

Corollary 4.0.8 is an immediate consequence of Theorem 4.0.6, which results in
a further contribution to Theorem 4.0.3 (as mentioned in Corollary 4.0.9).

Corollary 4.0.8 ([37]). If G is a nontrivial, finite group of odd order, whose
commutator subgroup [G, G] has order pq, where p and q are distinct primes, then
every connected Cayley graph on G has a Hamiltonian cycle.

Corollary 4.0.9 ([37]). If p and q are distinct primes, then every connected Cayley
graph of order 9pq has a Hamiltonian cycle.

When considering the topic of vertex-transitive graphs for which the number of
vertices has a prime factorization, Zhang in [51] has obtained the following result
for a prime p.

Theorem 4.0.10. Connected vertex-transitive digraphs of order p5 are
Hamiltonian.

5. Solvable and Nilpotent Groups

It is well known that, abelian ⊂ nilpotent ⊂ solvable. Hamiltonicity of Cayley
graphs on abelian group was reviewed, so next it is essential to discuss the results
on Cayley graphs on nilpotent and solvable groups.

Question 5.0.1. Does every Cayley graph and digraph on nilpotent groups have
a Hamiltonian path or cycle?

It is an open question whether connected Cayley digraphs on nilpotent groups
always have Hamiltonian paths. Until 1995, it was known that if G is nilpotent and

|G| = pn, where p is a prime, then ∃ a Hamiltonian cycle in
→

Cay (G; S).
As mentioned in previous survey results, it was proven that if the commutator

subgroup [G, G] of a nontrivial, finite group G is cyclic of prime-power order, then
every connected Cayley graph on G has a Hamiltonian cycle. It is natural to try
to prove a generalization that only assumes the commutator subgroup is cyclic,
without making any restriction on its order, but that seems to be an extremely
difficult problem. In 2013, Ghaderpour and Morris [21] replaced the assumption
on the order of [G, G] with the rather strong assumption that G is nilpotent and
obtained the following result.

Theorem 5.0.2 ([21]). Let G be a nontrivial, finite group. If G is nilpotent, and
the commutator subgroup of G is cyclic, then every connected Cayley graph on G

has a Hamiltonian cycle.
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The proof of this Theorem 5.0.2 is based on a variant of the method of Marušič
that was established in the proof of Theorem 4.0.1. The above result was obtained
by eliminating the restriction on the cardinality of the generating set S given in
Theorem 4.0.1, meanwhile Morris had obtained analogous result for the existence
of Hamiltonian path in Cayley digraphs on nilpotent groups without making any
assumption on the commutator subgroup.

Theorem 5.0.3 ([36]). Suppose G is a nilpotent, finite group. If {a, b} is any 2-

element generating set of G, then the corresponding Cayley digraph
→

Cay (G; a, b)
has a Hamiltonian path.

This result implies that all of the connected Cayley graphs of valence ≤ 4 on G

have Hamiltonian paths.

Question 5.0.4. Does every Cayley graph and digraph on solvable groups have a
Hamiltonian path or cycle?

Milnor’s counter example (1975) had shown that it is not true that there is a
Hamiltonian path in every Cayley digraph on a solvable group. Morris in [39] has
shown that there are infinitely many groups G, such that every Cayley graph on
G has a Hamiltonian cycle, and G is not solvable and provided numerous infinite
families of finite groups G, for which it is known that every connected Cayley graph
on G has a Hamiltonian cycle. However, it seems that the union of these families
contains only finitely many groups that are not solvable.

Moreover, [31] presents an unpublished result shown by Kutnar et al., stating
that every Cayley graph on A5 (Alternating group of degree 5) which is the smallest
nonsolvable group has a Hamiltonian cycle. Hence, there are infinitely many primes
p, such that every Cayley graph on A5 × Zp has a Hamiltonian cycle. Specifically,
Morris (2015) has proven the following result when p ≡ 1(mod 30).

Proposition 5.0.5 ([39]). If p is a prime, such that p ≡ 1(mod 30), then every
connected Cayley graph on the direct product A5 × Zp has a Hamiltonian cycle.

6. Direct Product and Semi-Direct Product of Groups

6.1. Direct product of groups

Definition 6.1.1 ([35]). Let G1 and G2 be two simple graphs with their vertex
sets as V1 = {u1, u2, . . . , ul} and V2 = {v1, v2, . . . , vm}, respectively. Then the direct
product of these two graphs denoted by G1×G2 is defined to be a graph with vertex
set V1 × V2, where V1 × V2 is the cartesian product of the sets V1 and V2 such that
any two distinct vertices (u1, v1) and (u2, v2) of G1 ×G2 are adjacent if u1u2 is an
edge of G1 and v1v2 is an edge of G2.

The digraph Cay({(1, 0), (0, 1)} : Zm × Zn) is denoted by Zm × Zn and it is
isomorphic to the cartesian product of a directed m-cycle and a directed n-cycle [15].
The Cartesian product of two Hamiltonian graphs is always Hamiltonian, but the
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analogous statement is not true for Cayley digraphs. Theorem 6.1.2 on Cayley
graph of Cartesian product of directed cycles was proven by Trotter and Erdös
(1978) which became one of the first result to expose the necessary conditions for
Zm × Zn to be Hamiltonian.

Theorem 6.1.2 ([47]). The Cartesian product Cn1 × Cn2 of directed cycles is
Hamiltonian if and only if the greatest common divisor (g.c.d.) d of n1 and n2

is at least two and there exist positive integers d1, d2 so that d1 + d2 = d and
g.c.d.(n1, d1) = g.c.d.(n2, d2) = 1.

According to [8], the vertex set of the kth cartesian power of a directed cycle
of length m can be naturally identified with the abelian group (Zm)k. For any two
elements v = (v1, . . . , vk) and w = (w1, . . . , wk) of (Zm)k, it is easy to see that if
there is a Hamiltonian path from v to w, then,

v1 + · · · + vk ≡ w1 + · · · + wk + 1 (mod m) (1)

The authors, Austin et al. have proven the converse of the above result in [8], for
k �= 2 and m is odd.

As emphasized in previous survey results [15], it was shown by Jungreis et al.
that every Cayley graph on a group of the forms Zp × A4 (p be prime, A4 be the
alternating group of degree 4) and D2p ×D2p (prime p �= 2 and D2p is the dihedral
group of order 2p) are Hamiltonian in regard to the direct product of Cayley graphs
of group of low order. More recently, Andruchuk et al. in [6] have developed those
results and obtained the following Theorem 6.1.3.

Theorem 6.1.3 ([6]). A Cayley digraph on D2n × D2m with outdegree two is
Hamiltonian if and only if it is connected.

In Theorem 6.1.3, for an integer n ≥ 2, the symbol D2n denotes the dihedral
group of order 2n. For n ≥ 3 this is the group of symmetries of regular n-gon under
the operation of function composition, and it has the presentation 〈R, F |Rn =
e, F 2 = e, FRF = R−1〉, where R is the counterclockwise rotation of 360/n◦ and F

is a reflection across any axis of symmetry. For n = 2 the same presentation can be
used to define D4 and D4 ≈ Z2 × Z2 [6].

6.2. Semi-direct product of groups

If K and L are groups, then a semi-direct product of K by L is a group G such that
K is a normal subgroup of G, L is a subgroup of G, K ∩ L is the identity element
of G and K ∪ L generates G.

In previous survey results, it was shown that every connected Cayley graph
on a semi-direct product of a cyclic group of prime order by an abelian group
is Hamiltonian [17] and sufficient conditions for semi-direct product of two cyclic
groups to have a directed Hamiltonian cycle. There seems to be less progress made
with regard to semi-direct product of Cayley graphs but at present Morris has

1930002-10



October 22, 2019 11:40 WSPC/S1793-8309 257-DMAA 1930002

Hamiltonicity in Cayley graphs and digraphs

shown many Cayley digraphs that do not have a Hamiltonian path and obtained
the following result.

Theorem 6.2.1 ([38]). For any n ∈ N, there is a connected Cayley digraph
→

Cay
(G; a, b), such that

(1)
→

Cay (G; a, b) does not have a Hamiltonian path,

(2) a and b both have order greater than n.

Furthermore, if p is any prime number such that p > 3 and p ≡ 3(mod 4), then
examples of connected Cayley digraphs that do not have Hamiltonian path such
that the commutator subgroup of G has order p was constructed by considering
G = Zm � Zp, which is a semi-direct product of two cyclic groups.

7. Coxeter Groups

In 1989, it was shown by Conway et al. that if G is a finite group generated by
reflections R1, . . . , Rn [14], then there is a Hamiltonian circuit in the Cayley dia-
gram for G corresponding to these generators. However, they have proven there
is a presentation for every finite Coxeter group so that the corresponding Cayley
graph has a Hamilton cycle. In this section, the notion of a Coxeter group of type
An, Bn and Dn will be briefly introduced, and the important recent results about
the existence of Hamilton cycles in Cayley graphs of finite Coxeter groups of type
An, Bn and Dn will be mainly focused.

7.1. Symmetric groups (Coxeter Group of type An)

A Coxeter group is a group generated by reflections R1, R2, . . . , Rn such that the
only other relations are of the form (RiRj)

k = 1. Given a Coxeter group G, we
associate a graph with it, called a Coxeter diagram, where there is a vertex asso-
ciated with each of the generating reflections [3]. The symmetric group Sn is the
group of all the permutations of {1, . . . , n}.
Definition 7.1.1 ([24]). An “involution” is a group element of order two.

Definition 7.1.2 ([24]). A cycle is a permutation f for which there exists an
element x in {1, . . . , n} such that x, f(x), . . . , fk(x) = x are the only elements
moved by f · k is called the length of the cycle and is equal to its order. Cycles of
length two are called “transpositions”.

Konstantinova has investigated previous results of Cayley graphs on symmetric
groups and shown that Cayley graphs on the symmetric group generated by any sets
of transpositions are Hamiltonian. Independently, number of results were shown for
particular sets of generators based on transpositions and following are the results
relevant to Cayley graphs on special sort of symmetric groups [29].

• In 1991, Jwo et al. had shown that the star graph is Hamiltonian.
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• Jwo had also shown that the bubble-sort graph is Hamiltonian.
• Hamiltonicity of Pancake graph had been investigated by Sheu et al. in 1999. The

Pancake graph Pn is Hamiltonian for any n ≥ 3.

The following theorem on Cayley graphs of symmetric group was proven by Pak
and Radoičić in 2004.

Theorem 7.1.3 ([24]). If Sn is generated by three involutions α, β, γ such that
two of them commute, then the Cayley graph Cay(Sn, {α, β, γ}) is Hamiltonian.

Heus in [24] has proven Theorem 7.1.3 by induction that there exists a spanning
cycle of Hamilton cycle through Sn.

It was already proven that Cay(Sn, X) is Hamilton-laceable when X is a gener-
ating set of transpositions for Sn.

Theorem 7.1.4 ([24]). The Cayley graph Cay(Sn; S) is Hamiltonian if S consists
only of transpositions.

However, Araki in [7] has provided a strong generalization regarding all of the
connected Cayley graphs on the symmetric group, whose connection sets contain
only transpositions, are Hamilton-laceable.

In the case of Cayley digraph on symmetric group Sn, σ − τ is an important
graph. In 1995 survey, it was shown upto the point that Cayley graph on Sn with
generators σ = (12 . . . n) and τ = (12), Cay(Sn; {σ, τ}) is Hamiltonian for all n >

2, and recently Williams (2013) in [49] had considered the directed σ − τ graph

G(n)=
→

Cay (Sn; {σ, τ}) on the symmetric group Sn with generators σ = (12 . . . n)
and τ = (12), and edges εσ ∪ ετ and constructed Hamiltonian path for all n and a
Hamiltonian cycle for odd n.

Although the Hamiltonicity of Cay(Sn, S) has been proved for many S, there are
still many more open cases remaining to be solved. It is known from Theorem 7.1.4
that every connected bipartite Cayley graph on the finite Coxeter group of type An,
n ≥ 2, whose connection set contains only transpositions and has valency at least
three is Hamilton-laceable. In 2014, Alspach [3] has considered finite Coxeter groups
An, Bn and Dn with regard to the problem of whether they are Hamilton-laceable or
Hamilton-connected and obtained analogous results for connected bipartite Cayley
graphs on finite Coxeter groups of type Bn and Dn which is given in Theorems 7.2.1
and 7.3.1.

7.2. Wreath products (Coxeter Group of type Bn)

Consider the Coxeter diagram shown in Fig. 1.
The generator Ri, 1 ≤ i ≤ n− 1, is the reflection of En through the orthogonal

complement of the vector with 1̄ in coordinate i, 1 in coordinate i + 1 and zeros in
all other coordinates. This is the Coxeter group Bn and it is easy to see that it is
isomorphic to the wreath product Sn  S2 [3].
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Fig. 1. Coxeter diagram.

Theorem 7.2.1 ([3]). If X = Cay(Sn  S2; S) is connected, has valency at least
three, and S contains only double transpositions and transpositions, then X is bipar-
tite and Hamilton-laceable.

7.3. Coxeter group of type Dn

A natural subgroup for each of groups with the signed permutations of length n, is
the collection of signed permutations with an even number of negative terms. This
group is the Coxeter group Dn. It is easy to see that Dn has index 2 in Sn  S2 [3].

Theorem 7.3.1 ([3]). If X = Cay(Dn; S) is a connected Cayley graph of valency
at least 3 on Dn, n ≥ 2, such that S contains only double transpositions and double
negators, then X is Hamilton-laceable when it is bipartite, or Hamilton-connected
when it is not bipartite.

Meanwhile, the result of Conway et al. (1989) has been generalized for real
reflection groups by Kriloff and Lay in [30] and consequently they have shown The-
orem 7.3.2 which says that there exists Hamiltonian cycles for every Cayley graph
of highly non-abelian infinite family of complex reflection groups, G = G(de, e, n) ∼=
µn

� Sn with respect to commonly used generating sets of reflections.
“We describe an infinite family of complex reflection groups. Let d, e, n ≥ 1,

µ denote the cyclic group of de-th roots of unity, and let ζ generate µ. Under
the standard monomial representation, G(de, e, n) consists of monomial matrices
with nonzero entries ζa1 , . . . , ζan such that (ζa1 , . . . , ζan)d = 1, or equivalently
a1 + · · · + an ≡ 0 mod e” [30].

“A reflection group G on V (n-dimensional complex vector space) is imprimitive
if there is a decomposition V = V1⊕V2⊕· · ·⊕Vk into proper nonzero subspaces such
that G permutes the subspaces. The groups G(de, e, n) with de, n ≥ 2 are imprim-
itive in their action on a system of lines orthogonal to the reflecting hyperplanes
and the exceptional groups are primitive” [30].

Theorem 7.3.2 ([30]). If G is an irreducible imprimitive complex reflection group
and S is a standard generating set for G, then the (undirected right) Cayley graph
Γ(G, S) has a Hamiltonian cycle.

It was proven separately for the cases of d = 2 in G(de, e, 2) and G(de, e, 3)
without distinguishing e = 2. Explicit Hamiltonian cycles were given for the fam-
ilies G(d, 1, 2), G(2e, e, 2), G(e, e, 3) and a Hamiltonian cycle in the graph for
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G(de, e, 2) was constructed by applying the flipping process to an explicit Hamilto-
nian path [30].

8. Miscellaneous

8.1. Cayley graph on Hamiltonian group

One of the important family of graphs for which Lovász Conjecture on Cayley
graphs was established was the family of Hamiltonian groups. A Hamiltonian group
is a non-abelian group in which all subgroups are normal as mentioned in [5].

Alspach and Qin in [5] had investigated Cayley graphs on Hamiltonian groups
and proved Theorem 8.1.1 which is analogous to the Chen–Quimpo Theorem 2.0.1.

Theorem 8.1.1 ([5]). Let X = Cay(G; S) be a connected Cayley graph on a
Hamiltonian group G. If val(X) ≥ 3, then X is Hamilton-connected if X is not
bipartite or X is Hamilton-laceable if X is bipartite.

The conjunction product Cay(G; S) · Cay(H ; T ) of two Cayley graphs is the
graph Cay(G×H, S ×T ) [24]. An example of a Cayley graph based on the product
of groups is the Cayley graph of a Hamiltonian group. Every Hamiltonian group G

is a direct product of the form G = Q8 ×B ×A, where Q8 is the quaternion group,
B is a number of copies of Z2 and A is an odd order abelian group [24].

Keating has proven the following conjecture on product of Cayley graphs is true
for all cases except the case where Cay(G, S) = C2, which is still open [24].

Conjecture 8.1.2. If there is a Hamilton cycle in each of Cay(G, S) and
Cay(H, T ), then there is a Hamilton cycle in the conjunction Cay(G, S) ·Cay(H, T ),
unless it is not connected.

8.2. Cubic Cayley graph

Given a group G and a generating set S of G, the Cayley graph Cay(G, S) is cubic
iff |S| = 3 and S = {a, b, c | a2 = b2 = c2 = 1} or S = {a, b, b−1 | a2 = bs = 1}.

Next result by Glover and Marušič (2006) is about the Hamiltonicity for cubic
Cayley graphs arising from groups that have a (2, s, 3)-presentation, that is, for
groups G = 〈a, b|a2 = 1, bs = 1, (ab)3 = 1, . . .〉 generated by an involution a and an
element b of order s ≥ 3 such that their product ab has order 3.

Theorem 8.2.1 ([23]). Let s ≥ 3 be an integer and G = 〈a, b | a2 = 1, bs =
1, (ab)3 = 1, etc.〉 be a group with a (2, s, 3)-presentation. Then the Cayley graph
X = Cay(G, {a, b, b−1}) has a Hamilton cycle when |G| (and thus also s) is congru-
ent to 2 modulo 4, and has a cycle of length |G|−2, and thus necessarily a Hamilton
path, when |G| is congruent to 0 modulo 4.

An important result in 2009 about the existence of Hamilton cycles in cubic
Cayley graphs by Glover et al. is that if s ≡ 0(mod 4) or s is odd then the Cayley
graph Cay(G, S) has a Hamiltonian cycle and it has been obtained using the theory
of maps [22].
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Each cubic Cayley graph has a canonical Cayley map given by an embedding
of the Cayley graph X = Cay(G, {a, b, b−1}) of the (2, s, 3)-presentation of a group
G = 〈a, b | a2 = 1, bs = 1, (ab)3 = 1, etc.〉 in the closed orientable surface of genus
1 + (s − 6) |G|

12s with faces |G|
s disjoint s-gons and |G|

3 hexagons [22].
The proof is done by finding a tree of faces in this canonical Cayley map whose

boundary encompasses all vertices of the graph. Essential ingredient in the Hamil-
tonian tree of faces method is the concept of cyclic edge-connectivity [22].

8.3. Alternating group graph

The alternating group graph AGn is the undirected Cayley graph of the set of
2(n−2) generators of the alternating group An given by g−3 , g+

3 , g−4 , g+
4 , . . . , g−n , g+

n ,
where g−i = (1, i, 2), g+

i = (1, 2, i) in permutation cycle notation. It was shown by
Jwo et al. in 1993 [27] AGn is Hamiltonian, and in 2012 Su et al. [46] have shown
that any alternating group graph AGn, where n ≥ 3 is an integer, contains 2n − 4
mutually independent Hamiltonian cycles.

9. Concluding Remarks

In this survey, the following two problems have been studied with the purpose of
updating the results on the existence of Hamiltonian paths and cycles in Cayley
graphs and digraphs.

(1) Cayley graph/digraph on particular group with which generating set has Hamil-
tonian paths or cycles.

(2) In general, Cayley graphs/digraphs on which groups have Hamiltonian paths
or cycles for all generating sets.

The problem of finding Hamiltonian cycles appeared to be very broad and in this
survey the problem was investigated with all known results since 1995 about Hamil-
tonicity concerning the Cayley graphs on dihedral groups, permutation groups,
p-group, coxeter groups, direct product of groups, semi-direct product of groups,
nilpotent groups and solvable groups but still there are a lot of open problems
remaining unsolved.

On the whole, the conjecture has been true for groups of small order as well as
Cay(G; S) has a Hamiltonian cycle in the cases when G is abelian, when [G, G] is
cyclic of prime-power order, when G is of prime-power order, when the order of G is
multiples of primes and when G is nilpotent and [G, G] is cyclic [30]. It is important
to note that above result is true for all generating sets S of G. These results also
signify that many Cayley digraphs do not have Hamiltonian cycles. Especially, it
has to be solved that Cayley graphs on dihedral group D2n with the generating
set consisting all reflection elements has a Hamiltonian cycle. In 2015, Morris has
shown that there are infinitely many nonsolvable groups G, such that every Cayley
graph on G has a Hamiltonian cycle. This result validates the contrapositive of the
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statement that Cayley graphs on solvable groups always have Hamiltonian cycles.
Also, it is known that connected Cayley digraphs on solvable groups do not always
have Hamiltonian paths, but it is not yet proven that connected Cayley digraphs
on nilpotent groups always have Hamiltonian paths.

This survey has reviewed several recent results that were spread around the
literature and rare positive results on weaker Lovász conjecture for finite groups
that left unanswered in previous survey results, but still there are some current
progress in regard to the conjecture.
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[25] W. Holsztyński and R. F. E. Strube, Paths and circuits in finite groups, Discrete
Math. 22(3) (1978) 263–272.

[26] M. Jixiang and H. Qiongxiang, Almost all Cayley graphs are Hamiltonian, Acta Math.
Sin. 12(2) (1996) 151–155.

[27] J. S. Jwo, S. Lakshmivarahan and S. K. Dhall, A new class of interconnectional
networks based on the alternating group, Networks 23(4) (1993) 315–326.

[28] K. Keating and D. Witte, On Hamilton cycles in Cayley graphs in groups with cyclic
commutator subgroup, Cycles in Graphs (Burnaby, BC, 1982), North-Holland Math.
Stud. 115 (1985) 89–102.

[29] E. Konstantinova, On some structural properties of star and pancake graphs, Inform.
Theory Combin. Search Theory 7777 (2013) 472–487.

[30] C. Kriloff and T. Lay, Hamiltonian cycles in Cayley graphs of imprimitive complex
reflection groups, Discrete Math. 326 (2014) 50–60.
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