MAT 122 2.0 Calculus

Dr. G.H.J. Lanel

Lecture 10

Outline

(1) L'hôpital's Rule: Indeterminate Forms

Outline

(1) L'hôpital's Rule: Indeterminate Forms

Indeterminate form of type 0/0

Indeterminate form of type 0/0

Limit of the form

Indeterminate form of type 0/0

Limit of the form

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

Indeterminate form of type 0/0

Limit of the form

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

in which $f(x) \longrightarrow 0$ and $g(x) \longrightarrow 0$ as $x \longrightarrow a$

Indeterminate form of type 0/0

Limit of the form

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

in which $f(x) \longrightarrow 0$ and $g(x) \longrightarrow 0$ as $x \longrightarrow a$
is called an indeterminate form of type $0 / 0$

L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containing $x=a$, except possible at $x=a$, and that

L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containing $x=a$, except possible at $x=a$, and that

L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containing $x=a$, except possible at $x=a$, and that

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containing $x=a$, except possible at $x=a$, and that

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

> Moreover this statement is also true in the case of limits as

L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containing $x=a$, except possible at $x=a$, and that

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containing $x=a$, except possible at $x=a$, and that

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Moreover this statement is also true in the case of limits as

L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containing $x=a$, except possible at $x=a$, and that

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Moreover this statement is also true in the case of limits as
$x \longrightarrow a^{-}, x \longrightarrow a^{+}, x \longrightarrow-\infty$ or as $x \longrightarrow+\infty$

E.g. Find the limit

Using L'Hôpital's rule, and check the result by factoring.

E.g. Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Using L'Hôpital's rule, and check the result by factoring.

E.g. Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Using L'Hôpital's rule, and check the result by factoring.

E.g. Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Using L'Hôpital's rule, and check the result by factoring.
Sol:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\frac{2^{2}-4}{2-2} \quad 0 / 0 \text { form }
$$

E.g. Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Using L'Hôpital's rule, and check the result by factoring.
Sol:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\frac{2^{2}-4}{2-2} \quad 0 / 0 \text { form }
$$

Using L'Hôpital's rule

E.g. Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Using L'Hôpital's rule, and check the result by factoring.
Sol:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\frac{2^{2}-4}{2-2} \quad 0 / 0 \text { form }
$$

Using L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{\frac{d}{d x}\left(x^{2}-4\right)}{\frac{d}{d x}(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{2 x}{1}=4
\end{aligned}
$$

E.g. Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Using L'Hôpital's rule, and check the result by factoring.
Sol:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\frac{2^{2}-4}{2-2} \quad 0 / 0 \text { form }
$$

Using L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{\frac{d}{d x}\left(x^{2}-4\right)}{\frac{d}{d x}(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{2 x}{1}=4
\end{aligned}
$$

By computation

In each part confirm that the limit is an indeterminate form of type O/O and evaluate it using L'HOPITAL's rule.

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$
(2) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}$

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$
(2) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}$
(3) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}$

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$
(2) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}$
(3) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}$
(4) $\lim _{x \rightarrow 0^{-}} \frac{\tan 2 x}{x^{2}}$

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$
(2) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}$
(3) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}$
(4) $\lim _{x \rightarrow 0^{-}} \frac{\tan 2 x}{x^{2}}$
(5) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$
(2) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}$
(3) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}$
(4) $\lim _{x \rightarrow 0^{-}} \frac{\tan 2 x}{x^{2}}$
(5) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
(6) $\lim _{x \rightarrow+\infty} \frac{x^{-\frac{4}{3}}}{\sin \left(\frac{1}{x}\right)}$

Sol:

Sol:

(1)

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\frac{\sin 0}{0}=\frac{0}{0} \text { form }
$$

Sol:

(1)

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\frac{\sin 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

Sol:

(1)

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\frac{\sin 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sin 2 x)}{\frac{d}{d x}(x)} \\
& =\lim _{x \rightarrow 0} \frac{2 \cos 2 x}{1} \\
& =2 \cos (0)=2
\end{aligned}
$$

Sol:

(1)

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\frac{\sin 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sin 2 x)}{\frac{d}{d x}(x)} \\
& =\lim _{x \rightarrow 0} \frac{2 \cos 2 x}{1} \\
& =2 \cos (0)=2
\end{aligned}
$$

Sol:

(1)

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\frac{\sin 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sin 2 x)}{\frac{d}{d x}(x)} \\
& =\lim _{x \rightarrow 0} \frac{2 \cos 2 x}{1} \\
& =2 \cos (0)=2
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x}=\frac{1-\sin \frac{\pi}{2}}{\cos \pi / 2}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

(2)

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x}=\frac{1-\sin \frac{\pi}{2}}{\cos \pi / 2}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule
(2)

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x}=\frac{1-\sin \frac{\pi}{2}}{\cos \pi / 2}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x} & =\lim _{x \rightarrow \pi / 2} \frac{\frac{d}{d x}(1-\sin x)}{\frac{d}{d x}(\cos x)} \\
& =\lim _{x \rightarrow \pi / 2} \frac{-\cos x}{-\sin x} \\
& =\frac{\cos \pi / 2}{\sin \pi / 2} \\
& =\frac{0}{1}=0
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x}=\frac{1-\sin \frac{\pi}{2}}{\cos \pi / 2}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x} & =\lim _{x \rightarrow \pi / 2} \frac{\frac{d}{d x}(1-\sin x)}{\frac{d}{d x}(\cos x)} \\
& =\lim _{x \rightarrow \pi / 2} \frac{-\cos x}{-\sin x} \\
& =\frac{\cos \pi / 2}{\sin \pi / 2} \\
& =\frac{0}{1}=0
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x}=\frac{1-\sin \frac{\pi}{2}}{\cos \pi / 2}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x} & =\lim _{x \rightarrow \pi / 2} \frac{\frac{d}{d x}(1-\sin x)}{\frac{d}{d x}(\cos x)} \\
& =\lim _{x \rightarrow \pi / 2} \frac{-\cos x}{-\sin x} \\
& =\frac{\cos \pi / 2}{\sin \pi / 2} \\
& =\frac{0}{1}=0
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x}=\frac{1-\sin \frac{\pi}{2}}{\cos \pi / 2}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x} & =\lim _{x \rightarrow \pi / 2} \frac{\frac{d}{d x}(1-\sin x)}{\frac{d}{d x}(\cos x)} \\
& =\lim _{x \rightarrow \pi / 2} \frac{-\cos x}{-\sin x} \\
& =\frac{\cos \pi / 2}{\sin \pi / 2} \\
& =\frac{0}{1}=0
\end{aligned}
$$

(3)

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}=\frac{e^{0}-1}{0}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

(3)

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}=\frac{e^{0}-1}{0}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

(3)

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}=\frac{e^{0}-1}{0}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(e^{x}-1\right)}{\frac{d}{d x}\left(x^{3}\right)} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}}{3 x^{2}} \\
& =+\infty
\end{aligned}
$$

(3)

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}=\frac{e^{0}-1}{0}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(e^{x}-1\right)}{\frac{d}{d x}\left(x^{3}\right)} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}}{3 x^{2}} \\
& =+\infty
\end{aligned}
$$

(3)

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}=\frac{e^{0}-1}{0}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(e^{x}-1\right)}{\frac{d}{d x}\left(x^{3}\right)} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}}{3 x^{2}} \\
& =+\infty
\end{aligned}
$$

(4)

$$
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}}=\frac{\tan 0}{0}=\frac{0}{0} \text { form }
$$

(4)

$$
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}}=\frac{\tan 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule
(4)

$$
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}}=\frac{\tan 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}} & =\lim _{x \rightarrow 0^{-}} \frac{\frac{d}{d x}(\tan x)}{\frac{d}{d x}\left(x^{2}\right)} \\
& =\lim _{x \rightarrow 0^{-}} \frac{\sec ^{2} x}{2 x} \\
& =-\infty
\end{aligned}
$$

(4)

$$
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}}=\frac{\tan 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}} & =\lim _{x \rightarrow 0^{-}} \frac{\frac{d}{d x}(\tan x)}{\frac{d}{d x}\left(x^{2}\right)} \\
& =\lim _{x \rightarrow 0^{-}} \frac{\sec ^{2} x}{2 x} \\
& =-\infty
\end{aligned}
$$

(4)

$$
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}}=\frac{\tan 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}} & =\lim _{x \rightarrow 0^{-}} \frac{\frac{d}{d x}(\tan x)}{\frac{d}{d x}\left(x^{2}\right)} \\
& =\lim _{x \rightarrow 0^{-}} \frac{\sec ^{2} x}{2 x} \\
& =-\infty
\end{aligned}
$$

Indeterminate form of type ∞ / ∞

L'Hôpital's Rule for

Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞
\square
Suppose f and g are differentiable functions on an open interval

Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

L'Hôpital's Rule for ∞ / ∞
Suppose f and g are differentiable functions on an open interva

Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

L'Hôpital's Rule for ∞ / ∞
Suppose f and g are differentiable functions on an open interval containing $x=a$, except possibly at, $x=a$ and that

Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

L'Hôpital's Rule for ∞ / ∞
Suppose f and g are differentiable functions on an open interval containing $x=a$, except possibly at, $x=a$ and that

$$
\lim _{x \rightarrow a} f(x)=\infty \text { and } \lim _{x \rightarrow a} g(x)=\infty
$$

Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

L'Hôpital's Rule for ∞ / ∞
Suppose f and g are differentiable functions on an open interval containing $x=a$, except possibly at, $x=a$ and that

$$
\lim _{x \rightarrow a} f(x)=\infty \text { and } \lim _{x \rightarrow a} g(x)=\infty
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

L'Hôpital's Rule for ∞ / ∞
Suppose f and g are differentiable functions on an open interval containing $x=a$, except possibly at, $x=a$ and that

$$
\lim _{x \rightarrow a} f(x)=\infty \text { and } \lim _{x \rightarrow a} g(x)=\infty
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

L'Hôpital's Rule for ∞ / ∞

Suppose f and g are differentiable functions on an open interval containing $x=a$, except possibly at, $x=a$ and that

$$
\lim _{x \rightarrow a} f(x)=\infty \text { and } \lim _{x \rightarrow a} g(x)=\infty
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Moreover this statement is also true in the case of limits as

Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

L'Hôpital's Rule for ∞ / ∞

Suppose f and g are differentiable functions on an open interval containing $x=a$, except possibly at, $x=a$ and that

$$
\lim _{x \rightarrow a} f(x)=\infty \text { and } \lim _{x \rightarrow a} g(x)=\infty
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Moreover this statement is also true in the case of limits as $x \longrightarrow a^{-}, x \longrightarrow a^{+}, x \longrightarrow-\infty$ or as $x \longrightarrow+\infty$
E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$
E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$

Sol:

E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$

Sol:

(1)

$$
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=\frac{\infty}{e^{\infty}}=\infty / \infty \text { form }
$$

E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$

Sol:

(1)

$$
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=\frac{\infty}{e^{\infty}}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule
E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$

Sol:

(1)

$$
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=\frac{\infty}{e^{\infty}}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}} & =\lim _{x \rightarrow+\infty} \frac{\frac{d}{d x}(x)}{\frac{d}{d x}\left(e^{x}\right)} \\
& =\lim _{x \rightarrow+\infty} \frac{1}{e^{x}} \\
& =0
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$

Sol:

(1)

$$
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=\frac{\infty}{e^{\infty}}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}} & =\lim _{x \rightarrow+\infty} \frac{\frac{d}{d x}(x)}{\frac{d}{d x}\left(e^{x}\right)} \\
& =\lim _{x \rightarrow+\infty} \frac{1}{e^{x}} \\
& =0
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$

Sol:

(1)

$$
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=\frac{\infty}{e^{\infty}}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}} & =\lim _{x \rightarrow+\infty} \frac{\frac{d}{d x}(x)}{\frac{d}{d x}\left(e^{x}\right)} \\
& =\lim _{x \rightarrow+\infty} \frac{1}{e^{x}} \\
& =0
\end{aligned}
$$

(2)

(2)

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\frac{\ln (0)}{\csc (0)}=\infty / \infty \text { form }
$$

(2)

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\frac{\ln (0)}{\csc (0)}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

(2)

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\frac{\ln (0)}{\csc (0)}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}(\csc (x))} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc (x) \cot (x)} \\
& =\infty / \infty \text { form }
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\frac{\ln (0)}{\csc (0)}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}(\csc (x))} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc (x) \cot (x)} \\
& =\infty / \infty \text { form }
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\frac{\ln (0)}{\csc (0)}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}(\csc (x))} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc (x) \cot (x)} \\
& =\infty / \infty \text { form }
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\frac{\ln (0)}{\csc (0)}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}(\csc (x))} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc (x) \cot (x)} \\
& =\infty / \infty \text { form }
\end{aligned}
$$

Any additional application of L'Hôpital's rule will yield powers of $\frac{1}{x}$ in the numerator and expressions involving $\csc (x)$ and $\cot (x)$ in the denominator.

Rewriting last expression

Rewriting last expression

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(-\frac{\sin x}{x} \tan x\right) & =-\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \lim _{x \rightarrow 0^{+}} \tan x \\
& =-(1)(0)=0
\end{aligned}
$$

Rewriting last expression

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(-\frac{\sin x}{x} \tan x\right) & =-\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \lim _{x \rightarrow 0^{+}} \tan x \\
& =-(1)(0)=0
\end{aligned}
$$

Rewriting last expression

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(-\frac{\sin x}{x} \tan x\right) & =-\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \lim _{x \rightarrow 0^{+}} \tan x \\
& =-(1)(0)=0
\end{aligned}
$$

Thus,

Rewriting last expression

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(-\frac{\sin x}{x} \tan x\right) & =-\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \lim _{x \rightarrow 0^{+}} \tan x \\
& =-(1)(0)=0
\end{aligned}
$$

Thus,

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=0
$$

The limit of an expression that has one of the forms

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually

 exert conflicting influences on the limit of the entire expression.The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually exert conflicting influences on the limit of the entire expression.

The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually exert conflicting influences on the limit of the entire expression. Indeterminate form of type $0 \cdot \infty$

The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually exert conflicting influences on the limit of the entire expression. Indeterminate form of type $0 \cdot \infty$

For example

The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually exert conflicting influences on the limit of the entire expression. Indeterminate form of type $0 \cdot \infty$

For example
$\lim _{x \rightarrow 0^{+}} x \ln (x)=0 \cdot \infty$ Indeterminate form

The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually exert conflicting influences on the limit of the entire expression.

Indeterminate form of type $0 \cdot \infty$
For example
$\lim _{x \rightarrow 0^{+}} x \ln (x)=0 \cdot \infty$ Indeterminate form
On the other hand

The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually exert conflicting influences on the limit of the entire expression.

Indeterminate form of type $0 \cdot \infty$
For example
$\lim _{x \rightarrow 0^{+}} x \ln (x)=0 \cdot \infty$ Indeterminate form
On the other hand
$\lim _{x \rightarrow+\infty} \sqrt{x}\left(1-x^{2}\right)=+\infty(-\infty)=-\infty$ Not an indeterminate form

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.
E.g. Evaluate

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.

E.g. Evaluate

(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying l'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.
E.g. Evaluate
(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(2) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)$

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.
E.g. Evaluate
(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(2) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)$

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.
E.g. Evaluate
(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(2) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)$
(1)

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.
E.g. Evaluate
(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(2) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)$
(1)

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=0 \cdot(-\infty)
$$

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.
E.g. Evaluate
(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(2) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)$

Sol:
(1)

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=0 \cdot(-\infty)
$$

Rewriting

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.
E.g. Evaluate
(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(2) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)$

Sol:
(1)

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=0 \cdot(-\infty)
$$

Rewriting

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}} \quad(\infty / \infty) \text { form }
$$

Applying L'Hôpital's rule

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}\left(\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x} \\
& =\lim _{x \rightarrow 0^{+}}(-x) \\
& =0
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}\left(\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x} \\
& =\lim _{x \rightarrow 0^{+}}(-x) \\
& =0
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}\left(\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x} \\
& =\lim _{x \rightarrow 0^{+}}(-x) \\
& =0
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}\left(\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x} \\
& =\lim _{x \rightarrow 0^{+}}(-x) \\
& =0
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}\left(\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x} \\
& =\lim _{x \rightarrow 0^{+}}(-x) \\
& =0
\end{aligned}
$$

(2) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty$
(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting
(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x) & =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}} \\
& =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=0 / 0 \text { form }
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x) & =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}} \\
& =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=0 / 0 \text { form }
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x) & =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}} \\
& =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=0 / 0 \text { form }
\end{aligned}
$$

Applying L'Hôpital's rule
(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x) & =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}} \\
& =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=0 / 0 \text { form }
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x} & =\lim _{x \rightarrow \pi / 4} \frac{\frac{d}{d x}(1-\tan x)}{\frac{d}{d x}(\cos 2 x)} \\
& =\lim _{x \rightarrow \pi / 4} \frac{-\sec ^{2} x}{-2 \sin 2 x} \\
& =\frac{\left(\sec \frac{\pi}{4}\right)^{2}}{2 \sin \left(\frac{2 \pi}{4}\right)}=\frac{2}{2}=1
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x) & =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}} \\
& =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=0 / 0 \text { form }
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x} & =\lim _{x \rightarrow \pi / 4} \frac{\frac{d}{d x}(1-\tan x)}{\frac{d}{d x}(\cos 2 x)} \\
& =\lim _{x \rightarrow \pi / 4} \frac{-\sec ^{2} x}{-2 \sin 2 x} \\
& =\frac{\left(\sec \frac{\pi}{4}\right)^{2}}{2 \sin \left(\frac{2 \pi}{4}\right)}=\frac{2}{2}=1
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x) & =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}} \\
& =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=0 / 0 \text { form }
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x} & =\lim _{x \rightarrow \pi / 4} \frac{\frac{d}{d x}(1-\tan x)}{\frac{d}{d x}(\cos 2 x)} \\
& =\lim _{x \rightarrow \pi / 4} \frac{-\sec ^{2} x}{-2 \sin 2 x} \\
& =\frac{\left(\sec \frac{\pi}{4}\right)^{2}}{2 \sin \left(\frac{2 \pi}{4}\right)}=\frac{2}{2}=1
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x) & =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}} \\
& =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=0 / 0 \text { form }
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x} & =\lim _{x \rightarrow \pi / 4} \frac{\frac{d}{d x}(1-\tan x)}{\frac{d}{d x}(\cos 2 x)} \\
& =\lim _{x \rightarrow \pi / 4} \frac{-\sec ^{2} x}{-2 \sin 2 x} \\
& =\frac{\left(\sec \frac{\pi}{4}\right)^{2}}{2 \sin \left(\frac{2 \pi}{4}\right)}=\frac{2}{2}=1
\end{aligned}
$$

Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions

Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions

Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$

Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$

Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$

Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(-\infty)$

The limit problems that lead to one of the expressions

Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(-\infty)$
is called an indeterminate form type $\infty-\infty$

Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(-\infty)$
is called an indeterminate form type $\infty-\infty$
The limit problems that lead to one of the expressions

Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(-\infty)$
is called an indeterminate form type $\infty-\infty$
The limit problems that lead to one of the expressions
(1) $(+\infty)+(+\infty)$

Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(-\infty)$
is called an indeterminate form type $\infty-\infty$
The limit problems that lead to one of the expressions
(1) $(+\infty)+(+\infty)$
(2) $(+\infty)-(-\infty)$

Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(-\infty)$
is called an indeterminate form type $\infty-\infty$
The limit problems that lead to one of the expressions
(1) $(+\infty)+(+\infty)$
(2) $(+\infty)-(-\infty)$
(3) $(-\infty)+(+\infty)$

Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(-\infty)$
is called an indeterminate form type $\infty-\infty$
The limit problems that lead to one of the expressions
(1) $(+\infty)+(+\infty)$
(2) $(+\infty)-(-\infty)$
(3) $(-\infty)+(+\infty)$
(4) $(-\infty)-(+\infty)$

Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(-\infty)$
is called an indeterminate form type $\infty-\infty$
The limit problems that lead to one of the expressions
(1) $(+\infty)+(+\infty)$
(2) $(+\infty)-(-\infty)$
(3) $(-\infty)+(+\infty)$
4) $(-\infty)-(+\infty)$
are not indeterminate, since two terms work together.

E.g. Evaluate

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)
$$

E.g. Evaluate

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)
$$

Sol:

Rewriting

E.g. Evaluate

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)
$$

Sol:

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)=\left(\frac{1}{0}-\frac{1}{\sin 0}\right)=\infty-\infty \text { form }
$$

E.g. Evaluate

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)
$$

Sol:

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)=\left(\frac{1}{0}-\frac{1}{\sin 0}\right)=\infty-\infty \text { form }
$$

Rewriting

E.g. Evaluate

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)
$$

Sol:

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)=\left(\frac{1}{0}-\frac{1}{\sin 0}\right)=\infty-\infty \text { form }
$$

Rewriting

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)=\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x-x}{x \sin x}\right)=\left(\frac{\sin 0-0}{0 \sin 0}\right)=0 / 0 \text { form }
$$

Applying L'Hôpital's rule

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x-x}{x \sin x}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\sin x-x)}{\frac{d}{d x}(x \sin x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\cos x-1}{\sin x+x \cos x}\right) \\
& =0 / 0 \text { form }
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x-x}{x \sin x}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\sin x-x)}{\frac{d}{d x}(x \sin x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\cos x-1}{\sin x+x \cos x}\right) \\
& =0 / 0 \text { form }
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x-x}{x \sin x}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\sin x-x)}{\frac{d}{d x}(x \sin x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\cos x-1}{\sin x+x \cos x}\right) \\
& =0 / 0 \text { form }
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x-x}{x \sin x}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\sin x-x)}{\frac{d}{d x}(x \sin x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\cos x-1}{\sin x+x \cos x}\right) \\
& =0 / 0 \text { form }
\end{aligned}
$$

Again Applying L'Hôpital's rule

Again Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\cos x-1)}{\frac{d}{d x}(\sin x+x \cos x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{-\sin x}{\cos x-x \sin x+\cos x}\right) \\
& =\frac{-\sin 0}{\cos 0-0 \sin 0+\cos 0} \\
& =\frac{0}{1-0+1} \\
& =0
\end{aligned}
$$

Again Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\cos x-1)}{\frac{d}{d x}(\sin x+x \cos x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{-\sin x}{\cos x-x \sin x+\cos x}\right) \\
& =\frac{-\sin 0}{\cos 0-0 \sin 0+\cos 0} \\
& =\frac{0}{1-0+1} \\
& =0
\end{aligned}
$$

Again Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\cos x-1)}{\frac{d}{d x}(\sin x+x \cos x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{-\sin x}{\cos x-x \sin x+\cos x}\right) \\
& =\frac{-\sin 0}{\cos 0-0 \sin 0+\cos 0} \\
& =\frac{0}{1-0+1} \\
& =0
\end{aligned}
$$

Again Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\cos x-1)}{\frac{d}{d x}(\sin x+x \cos x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{-\sin x}{\cos x-x \sin x+\cos x}\right) \\
& =\frac{-\sin 0}{\cos 0-0 \sin 0+\cos 0} \\
& =\frac{0}{1-0+1} \\
& =0
\end{aligned}
$$

Again Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\cos x-1)}{\frac{d}{d x}(\sin x+x \cos x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{-\sin x}{\cos x-x \sin x+\cos x}\right) \\
& =\frac{-\sin 0}{\cos 0-0 \sin 0+\cos 0} \\
& =\frac{0}{1-0+1} \\
& =0
\end{aligned}
$$

Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞}

Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞} E.g.
pause It is indeterminate because the expressions and ∞ respectively. Two conflicting influences. Such inderminate form can be evaluated by first introducing a dependent variable

Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞} E.g.

$$
\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}} \quad\left(1^{\infty}\right) \text { form }
$$

pause It is indeterminate because the expressions $1+x$ and $\frac{1}{x}$ gives 1 and ∞ respectively. Two conflicting influences. Such inderminate form can be evaluated by first introducing a dependent variable

Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞} E.g.

$$
\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}} \quad\left(1^{\infty}\right) \text { form }
$$

pause It is indeterminate because the expressions $1+x$ and $\frac{1}{x}$ gives 1 and ∞ respectively. Two conflicting influences. Such inderminate form can be evaluated by first introducing a dependent variable

$$
\begin{aligned}
y & =f(x)^{g(x)} \\
& =\ln \left(f(x)^{g(x)}\right) \\
& =g(x) \cdot \ln (f(x))
\end{aligned}
$$

Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞} E.g.

$$
\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}} \quad\left(1^{\infty}\right) \text { form }
$$

pause It is indeterminate because the expressions $1+x$ and $\frac{1}{x}$ gives 1 and ∞ respectively. Two conflicting influences. Such inderminate form can be evaluated by first introducing a dependent variable

$$
\begin{aligned}
y & =f(x)^{g(x)} \\
\ln (y) & =\ln \left(f(x)^{g(x)}\right) \\
& =g(x) \cdot \ln (f(x))
\end{aligned}
$$

Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞} E.g.

$$
\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}} \quad\left(1^{\infty}\right) \text { form }
$$

pause It is indeterminate because the expressions $1+x$ and $\frac{1}{x}$ gives 1 and ∞ respectively. Two conflicting influences. Such inderminate form can be evaluated by first introducing a dependent variable

$$
\begin{aligned}
y & =f(x)^{g(x)} \\
\ln (y) & =\ln \left(f(x)^{g(x)}\right) \\
& =g(x) \cdot \ln (f(x))
\end{aligned}
$$

Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞} E.g.

$$
\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}} \quad\left(1^{\infty}\right) \text { form }
$$

pause It is indeterminate because the expressions $1+x$ and $\frac{1}{x}$ gives 1 and ∞ respectively. Two conflicting influences. Such inderminate form can be evaluated by first introducing a dependent variable

$$
\begin{aligned}
y & =f(x)^{g(x)} \\
\ln (y) & =\ln \left(f(x)^{g(x)}\right) \\
& =g(x) \cdot \ln (f(x))
\end{aligned}
$$

The limit of $\ln (\mathrm{y})$ will be an indeterminate form of type $0 \cdot \infty$

E.g.

E.g.

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e \quad \text { Note }: a^{x}=e^{x} \ln (a)
$$

E.g.

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e \quad \text { Note }: a^{x}=e^{x} \ln (a)
$$

Sol: Let $y=(1+x)^{\frac{1}{x}}$
E.g.

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e \quad \text { Note }: a^{x}=e^{x} \ln (a)
$$

Sol: Let $y=(1+x)^{\frac{1}{x}}$

$$
\ln (y)=\ln (1+x)^{\frac{1}{x}} \Rightarrow \ln (y)=\frac{1}{x} \ln (1+x)
$$

E.g.

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e \text { Note : } a^{x}=e^{x} \ln (a)
$$

Sol: Let $y=(1+x)^{\frac{1}{x}}$

$$
\begin{gathered}
\ln (y)=\ln (1+x)^{\frac{1}{x}} \Rightarrow \ln (y)=\frac{1}{x} \ln (1+x) \\
\lim _{x \rightarrow 0} \ln y=\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\frac{\ln (1+0)}{0}(0 / 0 \text { form })
\end{gathered}
$$

Applying L'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x}=1
\end{aligned}
$$

Thus

Applying L'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x}=1
\end{aligned}
$$

Thus

Applying L'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \operatorname{In} y & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x}=1 \\
\ln (y) \rightarrow 1 \text { as } x \rightarrow 0 &
\end{aligned}
$$

Thus

Applying L'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x}=1 \\
\ln (y) \rightarrow 1 \text { as } x \rightarrow 0 & \\
\Rightarrow e^{\ln (y)} \rightarrow e^{1} \text { as } x \rightarrow 0 &
\end{aligned}
$$

Thus

Applying L'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x}=1 \\
\ln (y) \rightarrow 1 \text { as } x \rightarrow 0 & \\
\Rightarrow e^{\ln (y)} \rightarrow e^{1} \text { as } x \rightarrow 0 & \\
\Rightarrow y \rightarrow e \text { as } x \rightarrow 0 &
\end{aligned}
$$

Thus

Applying L'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x}=1 \\
\ln (y) \rightarrow 1 \text { as } x \rightarrow 0 & \\
\Rightarrow e^{\ln (y)} \rightarrow e^{1} \text { as } x \rightarrow 0 & \\
\Rightarrow y \rightarrow e \text { as } x \rightarrow 0 &
\end{aligned}
$$

Thus

Applying L'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x}=1 \\
\ln (y) \rightarrow 1 \text { as } x \rightarrow 0 & \\
\Rightarrow e^{\ln (y)} \rightarrow e^{1} \text { as } x \rightarrow 0 & \\
\Rightarrow y \rightarrow e \text { as } x \rightarrow 0 &
\end{aligned}
$$

Thus

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e
$$

