Graph Theory and Its Applications

Dr. G.H.J. Lanel

Lecture 1

Outline

Outline

(1) What is Graph Theory?

- History
- At present
(2) Introduction to Graph Theory
- Graphs
- Propoties of graphs
- Special graphs
- Bipartite graphs
- Cycles
- Directed graphs

Seven Bridges of Konigsberg

Graph theory started with Euler who was asked to find a nice path across the seven Koningsberg bridges.

Seven Bridges of Konigsberg

Graph theory started with Euler who was asked to find a nice path across the seven Koningsberg bridges.

The Eulerian path should cross over each of the seven bridges exactly once.

- In 1859 Sir William Rowan Hamilton developed a game that he sold to a Dublin toy manufacturer.
- The game consisted of a wooden regular dodecahedron with the 20 corner points labeled with the names of prominent cities.
- The objective of the game was to find a cycle along the edges so that each city was on the cycle exactly once.

- In 1859 Sir William Rowan Hamilton developed a game that he sold to a Dublin toy manufacturer.
- The game consisted of a wooden regular dodecahedron with the 20 corner points labeled with the names of prominent cities.
- The objective of the game was to find a cycle along the edges so that each city was on the cycle exactly once.

But now graph theory is used for finding communities in networks

where we want to detect hierarchies of substructures.

But now graph theory is used for finding communities in networks

where we want to detect hierarchies of substructures.

A transportation network

 and their sizes can become quite big ...
A transportation network

and their sizes can become quite big ...

Internet

and their sizes can become quite complicate ...

Internet

and their sizes can become quite complicate ...

Ordering

It is also used for ranking (ordering) hyperlinks,

Ordering

It is also used for ranking (ordering) hyperlinks,

 Wob - Images - Groupes •Repertcire

Google a recherche university belgium sur le Web. 1 - 10 rdsultats, sur un total d'environ 1,040,000. Recherche effectud
Voder-vous imiter la recherche a la langue: Francais?
Categorie: Regional $>$ Eurcpe \gg Education $>$ Non-University Highar Education
Portaal Universteil Gent/Ghent Unixersity Web portal

- U bent NIET ingelogd. Log in. UNIVERSITEIT GENT - Nederlandstalige site.

GHENT UNIVERSITY-Engish site. C2002 Universiteit Gent, Disclaimer.
Description. The largest and oldest public university in Belgium. Site in both Dutch and English. Links to education,... Cathgorio. Aateranca $>$ Education \gg Eurcoe $>$ Belgum $>$ Ghant Urivaraily
wwwrug acbel - 7k - En cache - Pages similaites
Université de Liége - University of Liege (Belgium)
LUniversité de Liege, une Universite complette: 8 facuites, 32 flilères d'enseignement, 350 unités de recherche
Description ULG - Presentation de ninsetution, la recherche et de renseignement. Guide du futur utudiant.
Catiogrie: World $>$ Frangala $\geqslant>$ Belgique $>$ Urivaratie de Litige
waw ulgac bel - 3 k - En cache - Pages similaires
Sevice Télematique et Communication
IIIHE. . Main Areas. Peocie, Internal Reports. Newsletter. Books. Summer 68te 2002. Wreless seminar. Webmaster. STC works with or is involved www ihe acbe/-13k - En cache-Pagas smilaites

Universiteit Antwerpen
Welkom aan de Universiteit Antwerpen,
Description: De studies, voorzieringen, onderwis, onderzoek en nieuws. Catigorie: World $>$ Nederlands \gg Gemeenten $>$ Aatherpen $>$ Ondeculs
www.ua ac be/ - 20k - En cacha - Pagas similairas

Ordering

It is also used to find the shortest path by using GPS,

Ordering

It is also used to find the shortest path by using GPS,

Outline

(1) What is Graph Theory?

- History
- At present
(2) Introduction to Graph Theory
- Graphs
- Propoties of graphs
- Special graphs
- Bipartite graphs
- Cycles
- Directed graphs

Definition of a graph

- Perhaps the most useful object in discrete mathematics (especially for computer science and other applications) is a structure called a graph.
- A graph $G=(V, E)$ is a pair of vertices (or nodes) V and edges E.

Definition of a graph

- Perhaps the most useful object in discrete mathematics (especially for computer science and other applications) is a structure called a graph.
- A graph $G=(V, E)$ is a pair of vertices (or nodes) V and edges E.

Definition of a graph

- Perhaps the most useful object in discrete mathematics (especially for computer science and other applications) is a structure called a graph.
- A graph $G=(V, E)$ is a pair of vertices (or nodes) V and edges E.

Definition of a graph

- Perhaps the most useful object in discrete mathematics (especially for computer science and other applications) is a structure called a graph.
- A graph $G=(V, E)$ is a pair of vertices (or nodes) V and edges E.

For example,

Here $V=\left\{v_{1}, v_{2}, \cdots, v_{5}\right\}$ and $E=\left\{e_{1}, e_{2}, \cdots, e_{6}\right\}$. An edge $e_{k}=\left(v_{i}, v_{j}\right)$ is incident with the vertices v_{i} and v_{j}.

Simple graphs

- A self-loop is an edge that joins to an identical vertex.
- A multi-edge is a collection of two or more edges having distinct end vertices.

Simple graphs

- A self-loop is an edge that joins to an identical vertex.
- A multi-edge is a collection of two or more edges having distinct end vertices.

Simple graphs

- A self-loop is an edge that joins to an identical vertex.
- A multi-edge is a collection of two or more edges having distinct end vertices.

For example,

Simple graphs

- A self-loop is an edge that joins to an identical vertex.
- A multi-edge is a collection of two or more edges having distinct end vertices.

For example,

- A simple graph has no self-loops or multiple edges.

Simple graphs

- The degree $d(v)$ of a vertex $v \in V$ is the number of edges incident to v.

Proposition: Let $G=(V, E)$ be a graph. Then

Corollary: The number of vertices of odd degree is even in G. For example,

Simple graphs

- The degree $d(v)$ of a vertex $v \in V$ is the number of edges incident to v.
- Proposition: Let $G=(V, E)$ be a graph. Then

$$
\sum_{v \in V} d(v)=2|E| .
$$

Simple graphs

- The degree $d(v)$ of a vertex $v \in V$ is the number of edges incident to v.
- Proposition: Let $G=(V, E)$ be a graph. Then

$$
\sum_{v \in V} d(v)=2|E| .
$$

- Corollary: The number of vertices of odd degree is even in G. For example,

Simple graphs

- The degree $d(v)$ of a vertex $v \in V$ is the number of edges incident to v.
- Proposition: Let $G=(V, E)$ be a graph. Then

$$
\sum_{v \in V} d(v)=2|E| .
$$

- Corollary: The number of vertices of odd degree is even in G. For example,

- A complete graph K_{n} is a simple graph with $n(n-1) / 2$ possible edges. When $n=2,3,4,5$, we have the following graphs.

- A complete graph K_{n} is a simple graph with $n(n-1) / 2$ possible edges. When $n=2,3,4,5$, we have the following graphs.

- A k-regular graph is a simple graph with vertices of equal degree k.
- A complete graph K_{n} is a simple graph with $n(n-1) / 2$ possible edges. When $n=2,3,4,5$, we have the following graphs.

K_{3}

K_{4}

K_{5}
- A k-regular graph is a simple graph with vertices of equal degree k.

- The complete graph K_{n} is $(n-1)$-regular
- A bipartite graph is one where $V=V_{1} \cup V_{2}$ such that there are edges only between V_{1} and V_{2} (the black and white nodes below).

A complete bipartite graph is one where all edges between V_{1} and

 V_{2} are present (i.e. $\left.E=\left|V_{1}\right| \cdot\left|V_{2}\right|\right)$. It is noted as $K_{n_{1}, n_{2}}$, where- Question: When is complete bipartite graph regular?
- A bipartite graph is one where $V=V_{1} \cup V_{2}$ such that there are edges only between V_{1} and V_{2} (the black and white nodes below).

- A complete bipartite graph is one where all edges between V_{1} and V_{2} are present (i.e. $\left.E=\left|V_{1}\right| \cdot\left|V_{2}\right|\right)$. It is noted as $K_{n_{1}, n_{2}}$, where $n_{1}=\left|V_{1}\right|$ and $n_{2}=\left|V_{2}\right|$.
- A bipartite graph is one where $V=V_{1} \cup V_{2}$ such that there are edges only between V_{1} and V_{2} (the black and white nodes below).

- A complete bipartite graph is one where all edges between V_{1} and V_{2} are present (i.e. $\left.E=\left|V_{1}\right| \cdot\left|V_{2}\right|\right)$. It is noted as $K_{n_{1}, n_{2}}$, where $n_{1}=\left|V_{1}\right|$ and $n_{2}=\left|V_{2}\right|$.

- Question: When is complete bipartite graph regular?
- Question: Which graph is bipartite?

- It suffices to find 2 colors that separate the edges as below,

- Question: Which graph is bipartite?.

- It suffices to find 2 colors that separate the edges as below,
- Question: Which graph is bipartite?.

- It suffices to find 2 colors that separate the edges as below,
- Question: Which graph is bipartite?.

- It suffices to find 2 colors that separate the edges as below,

- The second example is not bipartite because it has a triangle.
- Question: Which graph is bipartite?.

- It suffices to find 2 colors that separate the edges as below,
- The second example is not bipartite because it has a triangle.
- Proposition: A graph is bipartite if and only if it has no cycles of odd length.
- A walk of length k from vertex v_{0} to vertex v_{k} is a non-empty graph $W=\left(V_{1}, E_{1}\right)$ of the form

$$
V_{1}=\left\{v_{0}, v_{1} \cdots, v_{k}\right\}, E_{1}=\left\{\left(v_{0}, v_{1}\right), \cdots,\left(v_{k-1}, v_{k}\right)\right\}
$$

where edge j connects vertices $j-1$ and j (i.e. $\left|V_{1}\right|=\left|E_{1}\right|+1$).

A trail is a walk with all different edges.

- A walk of length k from vertex v_{0} to vertex v_{k} is a non-empty graph $W=\left(V_{1}, E_{1}\right)$ of the form

$$
V_{1}=\left\{v_{0}, v_{1} \cdots, v_{k}\right\}, E_{1}=\left\{\left(v_{0}, v_{1}\right), \cdots,\left(v_{k-1}, v_{k}\right)\right\}
$$

where edge j connects vertices $j-1$ and j (i.e. $\left|V_{1}\right|=\left|E_{1}\right|+1$).

- A trail is a walk with all different edges.
- A walk of length k from vertex v_{0} to vertex v_{k} is a non-empty graph $W=\left(V_{1}, E_{1}\right)$ of the form

$$
V_{1}=\left\{v_{0}, v_{1} \cdots, v_{k}\right\}, E_{1}=\left\{\left(v_{0}, v_{1}\right), \cdots,\left(v_{k-1}, v_{k}\right)\right\}
$$

where edge j connects vertices $j-1$ and j (i.e. $\left|V_{1}\right|=\left|E_{1}\right|+1$).

- A trail is a walk with all different edges.
- A walk or trail is closed when $v_{0}=v_{k}$.
- A walk of length k from vertex v_{0} to vertex v_{k} is a non-empty graph $W=\left(V_{1}, E_{1}\right)$ of the form

$$
V_{1}=\left\{v_{0}, v_{1} \cdots, v_{k}\right\}, E_{1}=\left\{\left(v_{0}, v_{1}\right), \cdots,\left(v_{k-1}, v_{k}\right)\right\}
$$

where edge j connects vertices $j-1$ and j (i.e. $\left|V_{1}\right|=\left|E_{1}\right|+1$).

- A trail is a walk with all different edges.
- A walk or trail is closed when $v_{0}=v_{k}$.
- A circuit is a closed trail.
- A walk of length k from vertex v_{0} to vertex v_{k} is a non-empty graph $W=\left(V_{1}, E_{1}\right)$ of the form

$$
V_{1}=\left\{v_{0}, v_{1} \cdots, v_{k}\right\}, E_{1}=\left\{\left(v_{0}, v_{1}\right), \cdots,\left(v_{k-1}, v_{k}\right)\right\}
$$

where edge j connects vertices $j-1$ and j (i.e. $\left|V_{1}\right|=\left|E_{1}\right|+1$).

- A trail is a walk with all different edges.
- A walk or trail is closed when $v_{0}=v_{k}$.
- A circuit is a closed trail.
- A path is a trail with all different vertices.
- A walk of length k from vertex v_{0} to vertex v_{k} is a non-empty graph $W=\left(V_{1}, E_{1}\right)$ of the form

$$
V_{1}=\left\{v_{0}, v_{1} \cdots, v_{k}\right\}, E_{1}=\left\{\left(v_{0}, v_{1}\right), \cdots,\left(v_{k-1}, v_{k}\right)\right\}
$$

where edge j connects vertices $j-1$ and j (i.e. $\left|V_{1}\right|=\left|E_{1}\right|+1$).

- A trail is a walk with all different edges.
- A walk or trail is closed when $v_{0}=v_{k}$.
- A circuit is a closed trail.
- A path is a trail with all different vertices.
- A cycle is a closed path.

In a directed graph or digraph, each edge has a direction.

In a directed graph or digraph, each edge has a direction.

Each vertex v has an in-degree $d_{i n}(v)$ and an out-degree $d_{\text {out }}(v)$.

Acyclic graphs

A directed acyclic graph is a graph without cycles.
Proposition: Every directed acyclic graph contains at least one vertex with zero in-degree.

Proof: By contradiction, assume $d_{i n}(v)>0$ for all vertices, then each Start from an arbitrary v_{0} to form a list of predecessors as below,

Acyclic graphs

A directed acyclic graph is a graph without cycles.
Proposition: Every directed acyclic graph contains at least one vertex with zero in-degree.

Proof: By contradiction, assume $d_{i n}(v)>0$ for all vertices, then each vertex i has a predecessor $p(i)$ such that $\left(v_{p(i)}, v_{i}\right) \in E$.

Start from an arbitrary v_{0} to form a list of predecessors as below,

Since $|V|$ is bounded, one must eventually return to a vertex that was already visited; hence there is a cycle.

End!

