MA1302 Engineering Mathematics I

Dr. G.H.J. Lanel

Lecture 1- Complex Numbers

Outline

Outline

(1) Motivation

(2) Introduction
(3) Graphical Representation of Complex Numbers

- Addition of Complex Numbers
(4) Polar form of Complex Numbers
(5) Exponential form of Complex Numbers
- De Moivre's theorem
(7) Roots of polynomials
- In the late middle ages, mathematicians discovered that if one were willing to allow for a new number, one whose square was -1 , quite a lot of mathematics got simpler!
(They particularly noticed that they could solve quadratic and cubic equations!)
- In the late middle ages, mathematicians discovered that if one were willing to allow for a new number, one whose square was -1 , quite a lot of mathematics got simpler!
(They particularly noticed that they could solve quadratic and cubic equations!)

Over time, the term imaginary has stuck, even though scientists and encineers now use comolex numbers all the time

- In the late middle ages, mathematicians discovered that if one were willing to allow for a new number, one whose square was -1 , quite a lot of mathematics got simpler!
(They particularly noticed that they could solve quadratic and cubic equations!)
- This imaginary number was therefore very useful.
\square
- In the late middle ages, mathematicians discovered that if one were willing to allow for a new number, one whose square was -1 , quite a lot of mathematics got simpler!
(They particularly noticed that they could solve quadratic and cubic equations!)
- This imaginary number was therefore very useful.
- Over time, the term imaginary has stuck, even though scientists and engineers now use complex numbers all the time.
- In the late middle ages, mathematicians discovered that if one were willing to allow for a new number, one whose square was -1 , quite a lot of mathematics got simpler!
(They particularly noticed that they could solve quadratic and cubic equations!)
- This imaginary number was therefore very useful.
- Over time, the term imaginary has stuck, even though scientists and engineers now use complex numbers all the time.
- It is now common agreement to write i as an entity that satisfies
- In the late middle ages, mathematicians discovered that if one were willing to allow for a new number, one whose square was -1 , quite a lot of mathematics got simpler!
(They particularly noticed that they could solve quadratic and cubic equations!)
- This imaginary number was therefore very useful.
- Over time, the term imaginary has stuck, even though scientists and engineers now use complex numbers all the time.
- It is now common agreement to write i as an entity that satisfies

$$
i^{2}=-1
$$

- Modern cell phone signals rely on sophisticated signal analysis; we would not have cell phones without the mathematics of complex numbers.

More analysis of electrical wiring and electrical signaling uses

 complex numbers.Complex numbers appear throughout all of mathematics and greatly simplify many mathematical problems!

- Modern cell phone signals rely on sophisticated signal analysis; we would not have cell phones without the mathematics of complex numbers.
- More analysis of electrical wiring and electrical signaling uses complex numbers.

Complex numbers appear throughout all of mathematics and greatly simplify many mathematical problems!

- Modern cell phone signals rely on sophisticated signal analysis; we would not have cell phones without the mathematics of complex numbers.
- More analysis of electrical wiring and electrical signaling uses complex numbers.
- Complex numbers appear throughout all of mathematics and greatly simplify many mathematical problems!

Outline

(1) Motivation

(2) Introduction
(3) Graphical Representation of Complex Numbers

- Addition of Complex Numbers
(4) Polar form of Complex Numbers
(5) Exponential form of Complex Numbers

8 De Moivre's theorem
(7) Roots of polynomials

Complex Numbers

- A complex number z is a number that can be written in the form $z=a+b i$ where a and b are real numbers.

Complex Numbers

- A complex number z is a number that can be written in the form $z=a+b i$ where a and b are real numbers.
- This form is known as the standard form or Cartesian form of z.
a is the real part of z, denoted by $\operatorname{Re}(z), b$ is the imaginary part of
z, denoted by $\operatorname{Im}(z)$
i is known as the imaginary unit, and note that $i^{2}:=-1$

Complex Numbers

- A complex number z is a number that can be written in the form $z=a+b i$ where a and b are real numbers.
- This form is known as the standard form or Cartesian form of z.
- a is the real part of z, denoted by $\operatorname{Re}(z), b$ is the imaginary part of z, denoted by $\operatorname{Im}(z)$.
- i is known as the imaginary unit, and note that
- The set of all complex numbers is denoted by

Complex Numbers

- A complex number z is a number that can be written in the form $z=a+b i$ where a and b are real numbers.
- This form is known as the standard form or Cartesian form of z.
- a is the real part of z, denoted by $\operatorname{Re}(z), b$ is the imaginary part of z, denoted by $\operatorname{Im}(z)$.
- i is known as the imaginary unit, and note that $i^{2}:=-1$

Complex Numbers

- A complex number z is a number that can be written in the form $z=a+b i$ where a and b are real numbers.
- This form is known as the standard form or Cartesian form of z.
- a is the real part of z, denoted by $\operatorname{Re}(z), b$ is the imaginary part of z, denoted by $\operatorname{Im}(z)$.
- i is known as the imaginary unit, and note that $i^{2}:=-1$
- The set of all complex numbers is denoted by \mathbb{C}.

Exercise 1

Identify the real part and imaginary part of each complex number.

Exercise 1

Identify the real part and imaginary part of each complex number.

Exercise 1

Identify the real part and imaginary part of each complex number.
(1) $5-3 i$

Exercise 1

Identify the real part and imaginary part of each complex number.
(1) $5-3 i$
(2) $i \sqrt{2}$

Exercise 1

Identify the real part and imaginary part of each complex number.
(1) $5-3 i$
(2) $i \sqrt{2}$
(3) $\frac{i+\pi}{5}$

Exercise 1

Identify the real part and imaginary part of each complex number.
(1) $5-3 i$
(2) $i \sqrt{2}$
(3) $\frac{i+\pi}{5}$
(4) $\frac{4-i \pi}{5}$

Equality of two complex numbers

Suppose $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$ are two complex numbers.
Then, $z_{1}=z_{2}$ if and only if $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$.

Exercise

Let $z_{1}=2+x-3 i$ and $z_{2}=5+(1-y) i$. If $z_{1}=z_{2}$, find x and y.

Multiplication of complex numbers

Form the product terms of
(1) the two left-hand terms
(2) the two inner terms

Multiplication of complex numbers

Form the product terms of
(1) the two left-hand terms
(2) the two inner terms
(C) the two outer terms

Multiplication of complex numbers

Form the product terms of
(1) the two left-hand terms
(2) the two inner terms
(3) the two outer terms
(a) the two right-hand terms

Multiplication of complex numbers

Form the product terms of
(1) the two left-hand terms
(2) the two inner terms
(3) the two outer terms

Multiplication of complex numbers

Form the product terms of
(1) the two left-hand terms
(2) the two inner terms
(3) the two outer terms
(4) the two right-hand terms

Elementary operations on complex numbers

Exercise 2

Simplify the followings.

Elementary operations on complex numbers

Exercise 2

Simplify the followings.
(1) $(2+3 i)+(i-4)$
(2) $(3-i)-(1+5 i)+(i-5)$
(3) i^{5}
(4) i^{-101}
(5) $(2+3 i)(i-4)$
(6) $(3-i)(1+5 i)(i-5)^{2}$
(7) $\sqrt{-25}$
(8) $(3-\sqrt{-16})(1+\sqrt{-9})$

Conjugate of a complex number

If $z=a+b i$, then the conjugate of z, denoted by \bar{z}, is $a-i b$.

Conjugate of a complex number

If $z=a+b i$, then the conjugate of z, denoted by \bar{z}, is $a-i b$.

Exercise 3

Find the conjugate of each complex number.

Conjugate of a complex number

If $z=a+b i$, then the conjugate of z, denoted by \bar{z}, is $a-i b$.

Exercise 3

Find the conjugate of each complex number.
(1) 3-2i

Conjugate of a complex number

If $z=a+b i$, then the conjugate of z, denoted by \bar{z}, is $a-i b$.

Exercise 3

Find the conjugate of each complex number.
(1) 3-2i
(2) $i+3$

Conjugate of a complex number

If $z=a+b i$, then the conjugate of z, denoted by \bar{z}, is $a-i b$.

Exercise 3

Find the conjugate of each complex number.
(1) 3-2i
(2) $i+3$
(3) π

Conjugate of a complex number

If $z=a+b i$, then the conjugate of z, denoted by \bar{z}, is $a-i b$.

Exercise 3

Find the conjugate of each complex number.
(1) 3-2i
(2) $i+3$
(3) π
(4) $(3+2 i)^{2}$

Absolute value of a complex number

The absolute value (or modules) of a complex number $z=a+b i$, denoted by $|z|$, is given by $|z|=a^{2}+b^{2}$:

Absolute value of a complex number

The absolute value (or modules) of a complex number $z=a+b i$, denoted by $|z|$, is given by $|z|=a^{2}+b^{2}$:

Exercise 4

Absolute value of a complex number

The absolute value (or modules) of a complex number $z=a+b i$, denoted by $|z|$, is given by $|z|=a^{2}+b^{2}$:

Exercise 4

(1) $|1-i|$

Absolute value of a complex number

The absolute value (or modules) of a complex number $z=a+b i$, denoted by $|z|$, is given by $|z|=a^{2}+b^{2}$:

Exercise 4

(1) $|1-i|$
(2) $|\sqrt{5}+2 i|$

Properties of absolute value

Exercise 5

Let $z, w \in \mathbb{C}$: Prove the following. (Identify when the equality holds in each inequality.)

Properties of absolute value

Exercise 5

Let $z, w \in \mathbb{C}$: Prove the following. (Identify when the equality holds in each inequality.)

Properties of absolute value

Exercise 5

Let $z, w \in \mathbb{C}$: Prove the following. (Identify when the equality holds in each inequality.)
(1) $|\operatorname{Re}(z)| \leq|z|$

Properties of absolute value

Exercise 5

Let $z, w \in \mathbb{C}$: Prove the following. (Identify when the equality holds in each inequality.)
(1) $|\operatorname{Re}(z)| \leq|z|$
(2) $|\operatorname{Im}(z)| \leq|z|$

Properties of absolute value

Exercise 5

Let $z, w \in \mathbb{C}$: Prove the following. (Identify when the equality holds in each inequality.)
(1) $|\operatorname{Re}(z)| \leq|z|$
(2) $|\operatorname{Im}(z)| \leq|z|$
(3) $|z|=|-z|$

Properties of absolute value

Exercise 5

Let $z, w \in \mathbb{C}$: Prove the following. (Identify when the equality holds in each inequality.)
(1) $|\operatorname{Re}(z)| \leq|z|$
(2) $|\operatorname{lm}(z)| \leq|z|$
(3) $|z|=|-z|$
(4) $|z|=|\bar{z}|$

Properties of absolute value

Exercise 5

Let $z, w \in \mathbb{C}$: Prove the following. (Identify when the equality holds in each inequality.)
(1) $|\operatorname{Re}(z)| \leq|z|$
(2) $|I m(z)| \leq|z|$
(3) $|z|=|-z|$
(4) $|z|=|\bar{z}|$
(5) $z \bar{z}=|z|^{2}=|\bar{z}|^{2}$

Properties of absolute value

Exercise 5

Let $z, w \in \mathbb{C}$: Prove the following. (Identify when the equality holds in each inequality.)
(1) $|\operatorname{Re}(z)| \leq|z|$
(2) $|\operatorname{Im}(z)| \leq|z|$
(3) $|z|=|-z|$
(4) $|z|=|\bar{z}|$
(5) $z \bar{z}=|z|^{2}=|\bar{z}|^{2}$
(6) $|z|=0$ if and only if $z=0$

Properties of absolute value

Exercise 5

Let $z, w \in \mathbb{C}$: Prove the following. (Identify when the equality holds in each inequality.)
(1) $|\operatorname{Re}(z)| \leq|z|$
(2) $|\operatorname{Im}(z)| \leq|z|$
(3) $|z|=|-z|$
(4) $|z|=|\bar{z}|$
(5) $z \bar{z}=|z|^{2}=|\bar{z}|^{2}$
(6) $|z|=0$ if and only if $z=0$
(7) $|z w|=|z||w|$

Properties of absolute value

Exercise 5

Let $z, w \in \mathbb{C}$: Prove the following. (Identify when the equality holds in each inequality.)
(1) $|\operatorname{Re}(z)| \leq|z|$
(2) $|\operatorname{Im}(z)| \leq|z|$
(3) $|z|=|-z|$
(4) $|z|=|\bar{z}|$
(5) $z \bar{z}=|z|^{2}=|\bar{z}|^{2}$
(6) $|z|=0$ if and only if $z=0$
(7) $|z w|=|z||w|$
(8) $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$ where $w \neq 0$

Properties of absolute value

Exercise 5

Let $z, w \in \mathbb{C}$: Prove the following. (Identify when the equality holds in each inequality.)
(1) $|\operatorname{Re}(z)| \leq|z|$
(2) $|\operatorname{lm}(z)| \leq|z|$
(3) $|z|=|-z|$
(4) $|z|=|\bar{z}|$
(5) $z \bar{z}=|z|^{2}=|\bar{z}|^{2}$
(6) $|z|=0$ if and only if $z=0$
(7) $|z w|=|z||w|$
(8) $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$ where $w \neq 0$
(2) $|z+w| \leq|z|+|w|$ (Triangular inequality)

Division of complex numbers

Exercise 6

Divide as indicated and write your answer in standard form.

Division of complex numbers

Exercise 6

Divide as indicated and write your answer in standard form.
(1) $\frac{3+2 i}{4-3 i}$

Division of complex numbers

Exercise 6

Divide as indicated and write your answer in standard form.
(1) $\frac{3+2 i}{4-3 i}$
(2) $\frac{1}{1-i}$

Division of complex numbers

Exercise 6

Divide as indicated and write your answer in standard form.
(1) $\frac{3+2 i}{4-3 i}$
(2) $\frac{1}{1-i}$
(3) $\frac{a+b i}{c+d i}$

Properties of conjugate

Exercise 7

Properties of conjugate

Exercise 7

Let $z, w \in \mathbb{C}$. Prove the following.
(1) $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$

Properties of conjugate

Exercise 7

Let $z, w \in \mathbb{C}$. Prove the following.
(-) $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$
(2) $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$

Properties of conjugate

Exercise 7

Let $z, w \in \mathbb{C}$. Prove the following.
(- $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$
(2) $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
(3) $\overline{\bar{z}}=z$

Properties of conjugate

Exercise 7

Let $z, w \in \mathbb{C}$. Prove the following.
(-) $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$
(2) $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
(3) $\overline{\bar{z}}=z$
(9) $\overline{z+w}=\bar{z}+\bar{w}$

Properties of conjugate

Exercise 7

Let $z, w \in \mathbb{C}$. Prove the following.
(1) $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$
(2) $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
(3) $\overline{\bar{z}}=z$
(4) $\overline{z+w}=\bar{z}+\bar{w}$
(5) $\overline{z W}=\bar{z} \bar{w}$

Properties of conjugate

Exercise 7

Let $z, w \in \mathbb{C}$. Prove the following.
(-) $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$
(2) $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
(3) $\overline{\bar{z}}=z$
(4) $\overline{z+w}=\bar{z}+\bar{w}$
(5) $\overline{z W}=\bar{z} \bar{w}$
(6) $\bar{z}^{n}=\bar{z}^{n}$

Properties of conjugate

Exercise 7

Let $z, w \in \mathbb{C}$. Prove the following.
(-) $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$
(2) $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
(3) $\overline{\bar{z}}=z$
(4) $\overline{z+w}=\bar{z}+\bar{w}$
(5) $\overline{z W}=\bar{z} \bar{w}$
(6) $\bar{z}^{n}=\bar{z}^{n}$
(7) $\overline{\left(\frac{z}{w}\right)}=\frac{\bar{z}}{\bar{w}}$

Outline

(1) Motivation

(2) Introduction
(3) Graphical Representation of Complex Numbers

- Addition of Complex Numbers
(4) Polar form of Complex Numbers
(5) Exponential form of Complex Numbers
- De Moivre's theorem
(7) Roots of polynomials

- Let us find the sum of z_{1} and z_{2} by Argand diagram.

- If we are adding vectors, they must be drawn as a chain.
 - We therefore draw at the end of z_{1}, a vector AP representing z_{2} in magnitude and direction, i.e. $\mathrm{AP}=\mathrm{OB}$ and is parallel to it.

- If we are adding vectors, they must be drawn as a chain. We therefore draw at the end of z_{1}, a vector $A P$ representing z_{2} in magnitude and direction, i.e. AP = OB and is parallel to it.
- If we are adding vectors, they must be drawn as a chain.
- We therefore draw at the end of z_{1}, a vector AP representing z_{2} in magnitude and direction, i.e. $\mathrm{AP}=\mathrm{OB}$ and is parallel to it.
- If we are adding vectors, they must be drawn as a chain.
- We therefore draw at the end of z_{1}, a vector AP representing z_{2} in magnitude and direction, i.e. $\mathrm{AP}=\mathrm{OB}$ and is parallel to it.
- Therefore OAPB is a parallelogram.

Thus the sum of z_{1} and z_{2} is given by the vector joining the starting point to the end of the last vector, i.e. OP.

- If we are adding vectors, they must be drawn as a chain.
- We therefore draw at the end of z_{1}, a vector AP representing z_{2} in magnitude and direction, i.e. $\mathrm{AP}=\mathrm{OB}$ and is parallel to it.
- Therefore OAPB is a parallelogram.
- Thus the sum of z_{1} and z_{2} is given by the vector joining the starting point to the end of the last vector, i.e. OP.
- If we are adding vectors, they must be drawn as a chain.
- We therefore draw at the end of z_{1}, a vector AP representing z_{2} in magnitude and direction, i.e. $\mathrm{AP}=\mathrm{OB}$ and is parallel to it.
- Therefore OAPB is a parallelogram.
- Thus the sum of z_{1} and z_{2} is given by the vector joining the starting point to the end of the last vector, i.e. OP.
- The complex numbers z_{1} and z_{2} can thus be added together by drawing the diagonal of the parallelogram formed by z_{1} and z_{2}.

Question?

- How do we do subtraction by similar means?

- We do this rather craftily without learning any new methods.

Question?

- How do we do subtraction by similar means?

- We do this rather craftily without learning any new methods.

$$
z_{l}-z_{2}=z_{l}+\left(-z_{2}\right)
$$

Question?

- How do we do subtraction by similar means?
- We do this rather craftily without learning any new methods.

$$
z_{l}-z_{2}=z_{l}+\left(-z_{2}\right)
$$

Question?

- How do we do subtraction by similar means?
- We do this rather craftily without learning any new methods.
- The trick is simply this:

$$
z_{l}-z_{2}=z_{l}+\left(-z_{2}\right)
$$

Question?

- How do we do subtraction by similar means?
- We do this rather craftily without learning any new methods.
- The trick is simply this:

$$
z_{l}-z_{2}=z_{l}+\left(-z_{2}\right)
$$

Outline

(1) Motivation

(2) Introduction

3 Graphical Representation of Complex Numbers

- Addition of Complex Numbers

4. Polar form of Complex Numbers

(5) Exponential form of Complex Numbers

6 De Moivre's theorem
(-) Roots of polynomials

- The point P can be represented as (a, b) in rectangular coordinates and as (r, θ) in polar co-ordinates.

Let $z=a+b i \neq 0$.

- The point P can be represented as (a, b) in rectangular coordinates and as (r, θ) in polar co-ordinates.

Let $z=a+b i \neq 0$.

- The point P can be represented as (a, b) in rectangular coordinates and as (r, θ) in polar co-ordinates.
- Then z can be expressed using polar coordinates as $z=r(\cos \theta+i \sin \theta)$ where $r=\sqrt{a^{2}+b^{2}}$ and $\theta=\tan ^{-1}\left(\frac{b}{a}\right)$. and θ is the argument of z, denoted by $\arg (z)$.
- Then z can be expressed using polar coordinates as $z=r(\cos \theta+i \sin \theta)$ where $r=\sqrt{a^{2}+b^{2}}$ and $\theta=\tan ^{-1}\left(\frac{b}{a}\right)$.
- This is known as the polar form of $z, 0<r$ is the modulus of z, and θ is the argument of z, denoted by $\arg (z)$.
- Then z can be expressed using polar coordinates as $z=r(\cos \theta+i \sin \theta)$ where $r=\sqrt{a^{2}+b^{2}}$ and $\theta=\tan ^{-1}\left(\frac{b}{a}\right)$.
- This is known as the polar form of $z, 0<r$ is the modulus of z, and θ is the argument of z, denoted by $\arg (z)$.
- The principle argument, denoted by $\operatorname{Arg}(z) \in(-\pi, \pi)$.

Exercise 8

Locate the given complex number on complex plane and give the polar form.

Exercise 8

Locate the given complex number on complex plane and give the polar form.
(1) $z=\sqrt{3}+1 i$

Exercise 8

Locate the given complex number on complex plane and give the polar form.
(1) $z=\sqrt{3}+1 i$
(2) $z=\sqrt{3}-1 i$

Exercise 8

Locate the given complex number on complex plane and give the polar form.
(1) $z=\sqrt{3}+1 i$
(2) $z=\sqrt{3}-1 i$
(3) $z=-\sqrt{3}+1 i$

Exercise 8

Locate the given complex number on complex plane and give the polar form.
(1) $z=\sqrt{3}+1 i$
(2) $z=\sqrt{3}-1 i$
(3) $z=-\sqrt{3}+1 i$
(4) $z=-\sqrt{3}-1 i$

Exercise 9

Exercise 9

- Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$. Show that $z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$.

Exercise 9

- Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$. Show that $z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$.
- Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $0 \neq z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$. Show that $\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]$.

Outline

(1) Motivation

(2) Introduction
(3) Graphical Representation of Complex Numbers

- Addition of Complex Numbers
(4) Polar form of Complex Numbers
(5) Exponential form of Complex Numbers
(6) De Moivre's theorem
(7) Roots of polynomials

Euler's Formula

Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that for any real number θ.

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

Let $z=r(\cos \theta+i \sin \theta)$. Then $z=r e^{i \theta}$ and this is known as the exponential form of z.

Exercise 11
Express the following in exponential form.

Let $z=r(\cos \theta+i \sin \theta)$. Then $z=r e^{i \theta}$ and this is known as the exponential form of z.

Exercise 11

Express the following in exponential form

Let $z=r(\cos \theta+i \sin \theta)$. Then $z=r e^{i \theta}$ and this is known as the exponential form of z.

Exercise 11

Express the following in exponential form.

Let $z=r(\cos \theta+i \sin \theta)$. Then $z=r e^{i \theta}$ and this is known as the exponential form of z.

Exercise 11

Express the following in exponential form.
(1) $1+i$

Let $z=r(\cos \theta+i \sin \theta)$. Then $z=r e^{i \theta}$ and this is known as the exponential form of z.

Exercise 11

Express the following in exponential form.
(1) $1+i$
(2) $-\pi i$

Let $z=r(\cos \theta+i \sin \theta)$. Then $z=r e^{i \theta}$ and this is known as the exponential form of z.

Exercise 11

Express the following in exponential form.
(1) $1+i$
(2) $-\pi i$
(3) e

Outline

(1) Motivation

(2) Introduction

(3) Graphical Representation of Complex Numbers

- Addition of Complex Numbers
(4) Polar form of Complex Numbers
(5) Exponential form of Complex Numbers

6 De Moivre's theorem
(7) Roots of polynomials

Let $n \in \mathbb{N}$. Then,

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

is called as the De Moivre's theorem.

Prove De Moivre's theorem.

Let $n \in \mathbb{N}$. Then,

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

is called as the De Moivre's theorem.

Proof.
Prove De Moivre's theorem.

Exercise: Prove that, $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$ and $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$ by using De Moivre's theorem.

Outline

(1) Motivation

(2) Introduction

(3) Graphical Representation of Complex Numbers

- Addition of Complex Numbers
(4) Polar form of Complex Numbers
(5) Exponential form of Complex Numbers

B De Moivre's theorem
(7) Roots of polynomials

In general, a root is the value which makes polynomial or function as zero. Consider the polynomial,

In general, a root is the value which makes polynomial or function as zero. Consider the polynomial,
$P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$ where $a_{i} \in \mathbb{C}, i=1, \ldots, n$ and $n \in \mathbb{N}$. Then, $r_{i}, i=1, \ldots, n$ is said to be a complex root of $p(x)$ when $r_{i}, 1 \in \mathbb{C}$ and $p\left(r_{i}\right)=0$ for $i \in 1,2,3, \ldots, n$.

In general, a root is the value which makes polynomial or function as zero. Consider the polynomial,
$P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$ where $a_{i} \in \mathbb{C}, i=1, \ldots, n$ and $n \in \mathbb{N}$. Then, $r_{i}, i=1, \ldots, n$ is said to be a complex root of $p(x)$ when $r_{i}, 1 \in \mathbb{C}$ and $p\left(r_{i}\right)=0$ for $i \in 1,2,3, \ldots, n$.

In the quadratic equation $a x^{2}+b x+c=0$ in which $b^{2}-4 a c<0$ has two complex roots. Therefore, whenever a complex number is a root of a polynomial with real coefficients, its complex conjugate is also a root of that polynomial.

End!

