MAT 122 2.0 Calculus

Dr. G.H.J. Lanel

Lecture 1

Outline

Outline

(9) Introduction to Sequences
(2) Monotonic and Bounded sequence
(3) Limit of a sequence

4 Convergent and Divergent sequences

5 Limit laws and limits of some important sequences

- A sequence is an ordered collection of objects in which repetitions are allowed. For example,

we can obtain a subsequence by restricting the original seauence to a smaller index set. For examole.

- A sequence is an ordered collection of objects in which repetitions are allowed. For example,

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots
$$

we can obtain a subsequence by restricting the original sequence to a smaller index set. For example,

- A sequence is an ordered collection of objects in which repetitions are allowed. For example,

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots
$$

- we can obtain a subsequence by restricting the original sequence to a smaller index set. For example,
- A sequence is an ordered collection of objects in which repetitions are allowed. For example,

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots
$$

- we can obtain a subsequence by restricting the original sequence to a smaller index set. For example,
$\left(a_{2}, a_{4}, a_{6}, \ldots\right)$ is a subsequence of $\left(a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right)$

The $n^{\text {th }}$ term

- A sequence is of the form $a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots$

The $n^{\text {th }}$ term

- A sequence is of the form $a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots$
- The $n^{\text {th }}$ term of a sequence is denoted by a_{n}.

How could you write the $n^{\text {th }}$ term of the following sequences?

How could you write the $n^{\text {th }}$ term of the following sequences?
(ㄱ) $1+\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$

How could you write the $n^{\text {th }}$ term of the following sequences?
(1) $1+\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$
(2) $1,2,4,8,16, \ldots$

How could you write the $n^{\text {th }}$ term of the following sequences?
(1) $1+\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$
(2) $1,2,4,8,16, \ldots$
(3) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$

Answers

(2) $1,2,4,8,16, \ldots, \Rightarrow a_{n}=2^{n-1}$

Answers

$$
\text { (1) } 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \Rightarrow a_{n}=\frac{1}{n}
$$

Answers

(1) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \Rightarrow a_{n}=\frac{1}{n}$
(2) $1,2,4,8,16, \ldots, \Rightarrow a_{n}=2^{n-1}$

Answers

(1) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \Rightarrow a_{n}=\frac{1}{n}$
(2) $1,2,4,8,16, \ldots, \Rightarrow a_{n}=2^{n-1}$
(3) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots, \Rightarrow a_{n}=\frac{n}{n+1}$

Outline

(1) Introduction to Sequences

(2) Monotonic and Bounded sequence
(3) Limit of a sequence

4 Convergent and Divergent sequences
(5) Limit laws and limits of some important sequences

Dr. G.H.J. Lanel (USJP)

Monotonic sequence

- A sequence is called increasing, if $a_{n}<a_{n+1}$ for all $n \geq 1$. That is $a_{1}<a_{2}<a_{3} \ldots$ for all n.
- It is called monotonic if it is either increasing or decreasing.

Monotonic sequence

- A sequence is called increasing, if $a_{n}<a_{n+1}$ for all $n \geq 1$. That is $a_{1}<a_{2}<a_{3} \ldots$ for all n.
- It is called decreasing, if $a_{n}>a_{n+1}$ for all $n \geq 1$.
- It is called monotonic if it is either increasing or decreasing.

Monotonic sequence

- A sequence is called increasing, if $a_{n}<a_{n+1}$ for all $n \geq 1$. That is $a_{1}<a_{2}<a_{3} \ldots$ for all n.
- It is called decreasing, if $a_{n}>a_{n+1}$ for all $n \geq 1$.
- It is called monotonic if it is either increasing or decreasing.

Consider the following examples:

(The right side is smaller because it has a larger denominator.)

Consider the following examples:

The sequence $\left\{\frac{3}{n+5}\right\}$ is decreasing since
$\frac{3}{n+5}>\frac{3}{(n+1)+5}=\frac{3}{n+6}$, for all $n \geq 1$.
(The right side is smaller because it has a larger denominator.)

Show that the sequence $\left\{\frac{n}{n^{2}+1}\right\}$ is decreasing.

Show that the sequence $\left\{\frac{n}{n^{2}+1}\right\}$ is decreasing.

Solution:

Show that the sequence $\left\{\frac{n}{n^{2}+1}\right\}$ is decreasing.

Solution:

We must show that $a_{n+1}<a_{n}$, that is, $\frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1}$

Show that the sequence $\left\{\frac{n}{n^{2}+1}\right\}$ is decreasing.

Solution:

We must show that $a_{n+1}<a_{n}$, that is, $\frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1}$

$$
\begin{aligned}
\frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1} & \Leftrightarrow(n+1)\left(n^{2}+1\right)<n\left[(n+1)^{2}+1\right] \\
& \Leftrightarrow n^{3}+n^{2}+n+1<n^{3}+2 n^{2}+2 n \\
& \Leftrightarrow 1<n^{2}+n
\end{aligned}
$$

Show that the sequence $\left\{\frac{n}{n^{2}+1}\right\}$ is decreasing.

Solution:

We must show that $a_{n+1}<a_{n}$, that is, $\frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1}$

$$
\begin{aligned}
\frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1} & \Leftrightarrow(n+1)\left(n^{2}+1\right)<n\left[(n+1)^{2}+1\right] \\
& \Leftrightarrow n^{3}+n^{2}+n+1<n^{3}+2 n^{2}+2 n \\
& \Leftrightarrow 1<n^{2}+n
\end{aligned}
$$

Since $n \geq 1, n^{2}+1>1$ we know that the inequality is true. Therefore, $a_{n+1}<a_{n}$ and so sequence is decreasing.

Bounded sequence

 $m \leq a_{n}$, for all $n \geq 1$.
Bounded sequence

- A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number M such that,

$$
a_{n} \leq M, \text { for all } n \geq 1
$$

If it is bounded above and below, then $\left\{a_{n}\right\}$ is a bounded

senillence

Bounded sequence

- A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number M such that,

$$
a_{n} \leq M, \text { for all } n \geq 1
$$

- It is bounded below if there is a number m such that,

$$
m \leq a_{n}, \text { for all } n \geq 1
$$

If it is bounded above and below, then $\left\{a_{n}\right\}$ is a bounded
sequence.

Bounded sequence

- A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number M such that,

$$
a_{n} \leq M, \text { for all } n \geq 1
$$

- It is bounded below if there is a number m such that,

$$
m \leq a_{n}, \text { for all } n \geq 1
$$

- If it is bounded above and below, then $\left\{a_{n}\right\}$ is a bounded sequence.

Examples:

The sequence $\{n\}$ is bounded below by 0 but not above.

The sequence $\left\{\frac{n}{n+1}\right\}$ is bounded below and above by 0 and 1 respectively for all n.

Examples:

- The sequence $\{n\}$ is bounded below by 0 but not above.

Examples:

- The sequence $\{n\}$ is bounded below by 0 but not above.
- The sequence $\left\{\frac{n}{n+1}\right\}$ is bounded below and above by 0 and 1 respectively for all n.

Outline

(1) Introduction to Sequences

(2) Monotonic and Bounded sequence
(3) Limit of a sequence

4 Convergent and Divergent sequences
(5) Limit laws and limits of some important sequences

A sequence $\left\{a_{n}\right\}$ has the limit L and we write
$\lim _{n \rightarrow \infty} a_{n}=L$ or $a_{n} \rightarrow L$ as $n \rightarrow \infty$.

A sequence $\left\{a_{n}\right\}$ has the limit L and we write
$\lim _{n \rightarrow \infty} a_{n}=L$ or $a_{n} \rightarrow L$ as $n \rightarrow \infty$.
i.e. if for every $\epsilon>0$ there is a corresponding integer N such that $a_{n}-L<\epsilon$, whenever $n>N$.

Outline

(1) Introduction to Sequences
(2) Monotonic and Bounded sequence
(3) Limit of a sequence
(4) Convergent and Divergent sequences
(5) Limit laws and limits of some important sequences

If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

Examples:

Convergent sequences have a finite limit.
\square

If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

Examples:

Convergent sequences have a finite limit.
$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \Rightarrow a_{n}=\frac{1}{n}$ and the limit of the sequence is 0

If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

Examples:

Convergent sequences have a finite limit.
$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \Rightarrow a_{n}=\frac{1}{n}$ and the limit of the sequence is 0

Divergent sequences do not have a finite limit.

If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

Examples:

Convergent sequences have a finite limit.
$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \Rightarrow a_{n}=\frac{1}{n}$ and the limit of the sequence is 0

Divergent sequences do not have a finite limit.
$3,5,7,9,11,13, \ldots, \Rightarrow a_{n}=2 n+1$ and the limit of the sequence is undefined.

Outline

(1) Introduction to Sequences

(2) Monotonic and Bounded sequence
(3) Limit of a sequence

4 Convergent and Divergent sequences
(5) Limit laws and limits of some important sequences

Limit Laws

- $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$

- $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n}$

Limit Laws

- $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$
- $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n}$

Limit Laws

- $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$
- $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n}$
- $\lim _{n \rightarrow \infty} c * a_{n}=c * \lim _{n \rightarrow \infty} a_{n}$, for some real number c

Limit Laws

- $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$
- $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n}$
- $\lim _{n \rightarrow \infty} c * a_{n}=c * \lim _{n \rightarrow \infty} a_{n}$, for some real number c
- $\lim _{n \rightarrow \infty} a_{n} * \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n} * b_{n}$

Limit Laws

- $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$
- $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n}$
- $\lim _{n \rightarrow \infty} c * a_{n}=c * \lim _{n \rightarrow \infty} a_{n}$, for some real number c
- $\lim _{n \rightarrow \infty} a_{n} * \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n} * b_{n}$
- If $\lim _{n \rightarrow \infty} b_{n} \neq 0$, then $\lim _{n \rightarrow \infty} a_{n} / b_{n}=\lim _{n \rightarrow \infty} a_{n} / \lim _{n \rightarrow \infty} b_{n}$

Limit Laws

- $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$
- $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n}$
- $\lim _{n \rightarrow \infty} c * a_{n}=c * \lim _{n \rightarrow \infty} a_{n}$, for some real number c
- $\lim _{n \rightarrow \infty} a_{n} * \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n} * b_{n}$
- If $\lim _{n \rightarrow \infty} b_{n} \neq 0$, then $\lim _{n \rightarrow \infty} a_{n} / b_{n}=\lim _{n \rightarrow \infty} a_{n} / \lim _{n \rightarrow \infty} b_{n}$
- If $p>0$ and $a_{n}>0$, then $\lim _{n \rightarrow \infty} a_{n}^{p}=\left(\lim _{n \rightarrow \infty} a_{n}\right)^{p}$

Evaluate the following limits

(1) $\lim _{n \rightarrow \infty} n /(n+1)$

Evaluate the following limits

(1) $\lim _{n \rightarrow \infty} n /(n+1)$
(2) $\lim _{n \rightarrow \infty}(-1)^{n} / n$

Evaluate the following limits

(1) $\lim _{n \rightarrow \infty} n /(n+1)$
(2) $\lim _{n \rightarrow \infty}(-1)^{n} / n$
(3) $\lim _{n \rightarrow \infty}(1+1 / n)^{n}$

Evaluate the following limits

(1) $\lim _{n \rightarrow \infty} n /(n+1)$
(2) $\lim _{n \rightarrow \infty}(-1)^{n} / n$
(3) $\lim _{n \rightarrow \infty}(1+1 / n)^{n}$
(4) $\lim _{n \rightarrow \infty} n!/ n^{n}$

(3) $\lim r^{n}$, where r is a real number

Evaluate the following limits

(1) $\lim _{n \rightarrow \infty} n /(n+1)$
(2) $\lim _{n \rightarrow \infty}(-1)^{n} / n$
(3) $\lim _{n \rightarrow \infty}(1+1 / n)^{n}$
(4) $\lim _{n \rightarrow \infty} n!/ n^{n}$
(5) $\lim _{n \rightarrow \infty} r^{n}$, where r is a real number

Evaluate the following limits

(1) $\lim _{n \rightarrow \infty} n /(n+1)$
(2) $\lim _{n \rightarrow \infty}(-1)^{n} / n$
(3) $\lim _{n \rightarrow \infty}(1+1 / n)^{n}$
(4) $\lim _{n \rightarrow \infty} n!/ n^{n}$
(5) $\lim _{n \rightarrow \infty} r^{n}$, where r is a real number
(6) $\lim _{n \rightarrow \infty} n^{1 / n}$

