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Preliminaries

Sets

A Set is a well defined collection of objects.

Each object in a set is called an element or member of the set.

Use ,
Upper case letters to denote a set

Lower case letters to denote members of a set
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Preliminaries

Set notation

a ∈ A means the element a belongs to the set A.

a /∈ A means the element a does not belong to the set A.

The empty set is denoted by ∅.
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Preliminaries

A set is finite if it contains a finite number of elements.

A set that is not finite is called an infinite set .

Two ways to describe sets.

1 Listing method. Eg. {2,1,3,0,5}

2 Rule method (Set builder method). Eg. {x ∈ Z|2 ≤ x ≤ 8}
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Preliminaries

Exercise 1

1 Describe numbers between 0 and 100 using a set.

Two sets A and B are equal if they have exactly the same
elements and it writes A = B.
(A 6= B means ”sets A and B do not have exactly the same
elements.”)

If each element of a set A is also an element of set B, we say that
A is a subset of B and write A ⊂ B.
(A 6⊂ B means A is not a subset of B.)
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Preliminaries

Sets Operations

The union of sets A and B, denoted by A ∪ B, is the set of all
elements that are in A or B.

A∪B = {x|x ∈ A or x ∈ B}

The intersection of sets A and B, denoted by A∩B, is the set of all
elements that are in A and B.

A∩B = {x |x ∈ A and x ∈ B}
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Preliminaries

If A∩ B =∅ then say A and B are disjoint.

The set of all elements under consideration is called the universal
set, denoted by U.

The complement of set A , denoted by A′, is the set of all elements
in U that are not in A.

A′ = {x ∈ U | x /∈ B}
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Preliminaries

Exercise 2

1 State true or false.

1 0 ∈ {-1,1}

2 ∅ ⊂ {100}

3 ∅ ∈ {0}
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Preliminaries

Sets of numbers

The set of natural numbers : N = {1,2,3, ...}

The set of integers: Z = {...,−2,−1,0,1,2,3, ...}

The set of rational numbers: Q = {p
q where p,q are integers, q 6= 0}

The set of irrational numbers: R \ Q

The set of real numbers: R

The set of complex numbers:C ={a+bi where a,b ∈ R and
i =
√
−1}
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Preliminaries

Order of operations

PEMDAS:

1 Parenthesis

2 Exponents

3 Multiplication, Division (from left to right)

4 Addition, Subtraction (from left to right)

Exercise 3

What is 25
1
2 − 6÷ 2(1 + 2) + 1?
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Preliminaries

Interval notation

An interval is a set of real numbers with the property that any
number that lies between two numbers in the set is also included
in the set.

Closed interval [a,b] = {x ∈ R : a≤ x ≤ b}

Open interval (a,b) = {x ∈ R : a <x < b}

Half open half closed interval (a,b] = {x ∈ R : a < x ≤ b }

[a,∞) ={x∈ R : x ≥a}

Exercise 4
Describe the data set {2,3,4,5} ∪ (4, 9] ∩ [-1 ,10).
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1 Preliminaries

2 Functions
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Functions

Functions

A quantity whose value can change is known as a variable.

A quantity whose value cannot change is known as a constant.

Definition
Let A and B be two given nonempty sets.
A rule denoted by f is called a function if it corresponds each element
(input) in A to a unique element (output) in B.

The set A is called the domain of f , set B is called the codomain of f ,
and the set of all the elements that return by f is called the range of f .
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Functions

Ways to represent a function

A function may be expressed:

As a set of ordered pairs

Numerically (by a table)

Visually (by a diagram or graph)

Algebraically (by a formula)
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Functions

Exercise 5

Determine each relation given is a function.

1 f = {(−1,−1), (0,1), (1,1)}

2 f = {(−1,−1), (0,1), (−1,1)}

3 f = {(−1,0), (0,1), (1,1)}

4 x = y2

5 y = x2

6 x2 +(y − 2)2 = 16
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Functions

Function notation

Notation
y = f (x) (read y equals f of x)

Mean for the given input value x the function returns y or f (x) as
the output.

x is called the independent variable and y is called the dependent
variable.
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Functions

Exercise 6

Let f (x) = 2x3 + 5x − 4

1 Evaluate f (0), f (−2π), f (2t) and f (p − 3)

2 Identify the domain and range of f .
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Functions

Domain of a function

The domain of a function is the set of all real numbers that return a real
number as the output.

Exercise 7

Find the domain of each function. Give the answer in interval notation.

1 f (x) =
√

2x − 10

2 g(x) =
2x

x + 5
3 h(x) = e

4 F (x) = ln(x − 3)
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Functions

Operations on functions

Let f be a function with domain D(f) and g be a function with domain
D(g).

Sum : (f + g)(x) := f (x) + g(x) where D(f + g) = D(f ) ∩ D(g)

Difference :(f − g)(x) := f (x)− g(x) where
D(f − g) = D(f ) ∩ D(g)

Product :(fg)(x) := f (x)g(x) where D(fg) = D(f ) ∩ D(g)

Quotient: (f ÷ g)(x) := f (x)÷ g(x) where D(f ÷ g) = {x ∈ D(f)∩
D(g) : g(x) 6=0 }

Composition: (f ◦ g)(x) := f [g(x)] where
D(f ◦ g) = {x ∈ D(g) : g(x) ∈ D(f )}
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Functions

Exercise

Let f (x) =
√

x + 1 and g(x) = 1
x−1 . Find indicated functions and give

domain of each function.

1 f + g

2 fg

3 g − f

4 f ◦ g

5 g ◦ f

6 (f ◦ g)(3)
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Functions

Elementary functions

Exercise 9

Graph each function. Give domain and range.

Constant function f (x) = c where c is any constant.

Identity function f (x) = x

Squaring function f (x) = x2

Cubing function f (x) = x3

Reciprocal function f (x) = 1
x
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Functions

Elementary functions

Absolute value function f (x) =| x |

Square root function f (x) =
√

x

Cube root function f (x) = x
1
3

Unit step function

f (x) =

{
1, if x ≥ 0
0, Otherwise

Greatest integer function f (x) = bxc (=largest integer less than or
equal to x)
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Functions

Properties of functions

Let c > 0,

The graph of f (x + c) will be a shift of the graph of f (x) to the left
by c units.

The graph of f (x − c) will be a shift of the graph of f (x) to the right
by c units.

The graph of f (x) + c will be a shift of the graph of f (x) upward by
c units.

The graph of f (x)− c will be a shift of the graph of f (x) downward
by c units.

The graph of cf (x)(c > 1) will be a vertical stretch of the graph of
f (x) by a factor of c.
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Functions

Properties of functions

The graph of cf (x)(0 < c < 1) will be a vertical compress of graph
of f (x) by a factor of c.

The graph of f (cx)(c > 1) will be a horizontal compress of the
graph of f (x) by a factor of c.

The graph of f (cx)(0 < c < 1) will be a horizontal stretch of the
graph of f (x) by a factor of c.

The graph of −f (x) will be a reflection of the graph of f (x) across
the x-axis.

The graph of f (−x) will be a reflection of the graph of f (x) across
the y -axis.
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Functions

Exercise 10

The graph of f (x) =| x |; x ∈ [−3;3], vertically stretched by a factor 2,
reflected across the x-axis, shitted 5 units upward.

Give the equation, domain, range and graph of the resulting function.
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Functions

One-to-one functions

Definition

A function for which every element of the range of the function
corresponds to exactly one element of the domain is called a
one-to-one function.

f is one-to-one if f (x1) 6= f (x2) whenever x1 6=x2 for all x1, x2 in the
domain of f.

A function is one-to-one if no horizontal line intersects the graph of
the function more than once.

Exercise 11
Determine each function is one-to-one.
(a) f (x) = 3(x + 1)2 (b) g(x) =

√
4x + 1
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Functions

Inverse of a function

Definition

Let f and g be two one-to-one functions and the domain of f is D(f ),
domain of g is D(g), range of f is R(f ), and range of g is R(g).

Suppose D(g) = R(f ) and D(f ) = R(g). Then, f and g are inverse
functions of each other if (f ◦ g)(x) = (g ◦ f )(x) = x for all x .

The inverse of f is denoted by f−1.

If the ordered pair (a;b) is on the graph of f , then (b,a) is on the
graph of f−1.

The graph of f and f−1 are reflections across the line y = x :
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functions of each other if (f ◦ g)(x) = (g ◦ f )(x) = x for all x .

The inverse of f is denoted by f−1.

If the ordered pair (a;b) is on the graph of f , then (b,a) is on the
graph of f−1.

The graph of f and f−1 are reflections across the line y = x :
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Functions

Exercise 12

Let f (x) =
2x − 3
x + 4

Find the f−1
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Functions

Odd and even functions

Definition

A function f is even if f (−x) = f (x) for all x in the domain of f .

A function f is odd if f (−x) = −f (x) for all x in the domain of f .
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Functions

The graph of an even function is symmetric with respect to the y -axis.

If (a,b) is on the graph of an even function then (−a,b) is also on the
graph.

The graph of an odd function is symmetric with respect to the origin.

If (a,b) is on the graph of an even function then (−a,−b) is also on the
graph.
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Functions

Exercise 13

Determine each function is even, odd or neither.

1 f (x) = 3x2 − 2

2 g(x) = 2x3 + 5x

3 h(x) = 4x − 3

Dr. G.H.J. Lanel (USJP) Functions, limits and continuity Lecture 2 33 / 54



Functions

Exercise 13

Determine each function is even, odd or neither.

1 f (x) = 3x2 − 2

2 g(x) = 2x3 + 5x

3 h(x) = 4x − 3

Dr. G.H.J. Lanel (USJP) Functions, limits and continuity Lecture 2 33 / 54



Functions

Exercise 13

Determine each function is even, odd or neither.

1 f (x) = 3x2 − 2

2 g(x) = 2x3 + 5x

3 h(x) = 4x − 3

Dr. G.H.J. Lanel (USJP) Functions, limits and continuity Lecture 2 33 / 54



Functions

Exercise 13

Determine each function is even, odd or neither.

1 f (x) = 3x2 − 2

2 g(x) = 2x3 + 5x

3 h(x) = 4x − 3

Dr. G.H.J. Lanel (USJP) Functions, limits and continuity Lecture 2 33 / 54



Functions

Periodic functions

Definition
A function f is called periodic if there is a positive constant T such that
f (x + T ) = f (x) for all x in the domain of f . T is called the period.
(If there exists a least positive constant P with this property, it is called
the fundamental period.)

Exercise 14
An automated robot transports building materials between two
locations, which are 6 km apart. It takes the robot two hours to reach
the materials and two hours to return. Neglecting loading and
unloading time, draw a displacement versus time graph that shows the
robot performing 4 complete trips. Identify the period of this graph.
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Categories of functions

Outline

1 Preliminaries

2 Functions

3 Categories of functions
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Categories of functions

Categories of functions

Linear functions

Quadratic functions

Polynomial functions

Rational functions

Exponential functions

Logarithmic functions

Hyperbolic functions

Trigonometric functions
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Categories of functions

Linear functions

Definition
A function f is linear if it has the form f (x) = ax + b where a,b are
constants (a 6= 0)a is known as the slope of the function.

Exercise 15
Find the equation of a linear function f which passes through the
points (2,-5) and (4, 7).

Graph f and locate x-intercept and y -intercept.
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Categories of functions

Quadratic functions

Definition

A function f is quadratic if it has the form f (x) = ax2 + bx + c where
a,b, c are constants (a 6= 0).

Exercise 16

Let f (x) = 3x2 − 7x − 2: Complete square to write
f (x) = a(x − h)2 + k form. Give the minimum value of f . Graph f and
give zeros of f (A number c is a zero of a function if f (c) = 0).
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Categories of functions

Polynomial functions

Definition
A function f is a polynomial of degree n if it has the form
f (x) = anxn + an−1xn−1 + ..+ a0 where an,an−1, ...,a0 are constants
(an 6= 0) and n ∈N .

Exercise 17

Let f (x) = 3(x + 1)3(2x − 7)2(x − 10). Graph f .

Solve the inequality f (x) > 0.
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Categories of functions

Rational functions

Definition

A function f is rational if it has the form f (x) = p(x)
q(x) (where p and q are

polynomials and q(x) 6= 0)

The line x = a is called a vertical asymptote if f approaches ±∞
as x approaches a.

The line y = b is called a horizontal asymptote if f approached b
as x approached ±∞.

Exercise 18

Let f (x) = x2−3x+2
(2x−5)(x+5) . Give domain of f . Graph f .

Find vertical asymptotes and horizontal asymptotes of f .
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Categories of functions

Exponential function

Definition

A function f is exponential if it has the form f (x) = ax where
a > 0,a 6= 1 is a constant called the base of f . (When a = e it is called
the natural exponential function.)

Figure :
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Categories of functions

Exercise 19

Graph

f (x) = 21−x

g(x) = 3− (1
2)

x

h(x) = 3 · 2x−3
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Categories of functions

Logarithmic functions

Definition
If x = ax then y = loga x is called the logarithmic function of base
a(a > 0,a 6= 1).

(When a = e it is written ln x and called the natural logarithmic
function.)

Figure :
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Categories of functions

The functions f (x) = ax and g(x) = logax are inverse functions of
each other.

Exercise 20

Graph

1 f (x) = log(x + 1)

2 g(x) = log | x − 1 |

3 h(x) = 2− ln(2x − 3)
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Categories of functions

Exercise 21: Solve

2ln
√

x − ln(1− x)− 2 = 0

eln(x+1) − xe3x+5 = 1
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Categories of functions

Hyperbolic functions

Definition

The hyperbolic functions are defined as coshx =
1
2
(ex + e−x) and

sinhx =
1
2
(ex − e−x)

Figure :
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Categories of functions

Exercise 22

Graph coshx and sinhx . Give their domain and range and comment on
even or oddness.

Other hyperbolic functions are defined as:

tanhx =
sinhx
coshx

,

cschx =
1

sinhx
,

sechx = 1
coshx ,

and cothx = coshx
sinhx
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Categories of functions

Exercise 23
Prove the following identities.

cosh2x − sinh2x = 1 for all x .

sinh(−x) = −sinh(x)

cosh(−x) = cosh(x)

1− tanh2x = sech2x

sinh(x + y) = sinhxcoshy + coshxsinhy

cosh(x + y) = coshxcoshy + sinhxsinhy

Exercise

Express 2ex − e−x in terms of coshx and sinhx .
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Categories of functions

Exercise: Show that

sinh−1x = ln(x +
√

x2 + 1)

cosh−1x = ln(x +
√

x2 − 1)

tanh−1 = 1
2 ln(

1 + x
1− x

)
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Categories of functions

Trigonometric functions

Definition
One radian (rad) is the measure of a central angle that intercepts an
arc s equal in length to the radius r of the circle. I.e., θ = s

r and, π rad
= 1800.
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Categories of functions

Exercise 26
For each angle in standard position, identify initial side, terminal side,
angles measured counterclockwise or clockwise direction.
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Categories of functions

Let P be on the unit circle, centered at origin. Define the following
ratios as follows whenever they make sense.
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Categories of functions

sinθ = y , cosθ = x , tanθ = y
x cscθ =

1
y
, secθ = 1

x , cotθ =
x
y
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Categories of functions

Exercise 27
Graph each function and give its domain, range, and period.

f (x) = sinx
f (x) = cosx
f (x) = tanx
f (x) = cscx
f (x) = secx
f (x) = cotx
f (x) = sin−1x
f (x) = cos−1x
f (x) = tan−1x
f (x) = csc−1x
f (x) = sec−1x
f (x) = cot−1x
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