Functions

Dr. G.H.J. Lanel

Lecture 2

Outline

Outline

(2) Functions

(3) Categories of functions

Sets

- A Set is a well defined collection of objects.
- Each object in a set is called an element or member of the set.
- Upper case letters to denote a set

Sets

- A Set is a well defined collection of objects.
- Each object in a set is called an element or member of the set.
- Upper case letters to denote a set
- Lower case lelters io denote members of a set

Sets

- A Set is a well defined collection of objects.
- Each object in a set is called an element or member of the set.
- Use,
- Upper case letters to denote a set
- Lower case letters to denote members of a set

Sets

- A Set is a well defined collection of objects.
- Each object in a set is called an element or member of the set.
- Use,
- Upper case letters to denote a set
- Lower case letters to denote members of a set

Set notation

- $\mathrm{a} \in \mathrm{A}$ means the element a belongs to the set A. $a \notin A$ means the element a does not belong to the set A. - The empty set is denoted by \emptyset.

Set notation

- $\mathrm{a} \in \mathrm{A}$ means the element a belongs to the set A.
- $a \notin A$ means the element a does not belong to the set A.

Set notation

- $\mathrm{a} \in \mathrm{A}$ means the element a belongs to the set A.
- $a \notin A$ means the element a does not belong to the set A.
- The empty set is denoted by \emptyset.
- A set is finite if it contains a finite number of elements.

A set that is not finite is called an infinite set

(1) Listing method. Eg. $\{2,1,3,0,5\}$ (-) Rule method (Set builder method). Eg.

- A set is finite if it contains a finite number of elements.
- A set that is not finite is called an infinite set .

Two ways to describe sets.
(1) Listing method. Eg. $\{2,1,3,0,5\}$
(5) Rule method (Set builder method). Eg.

- A set is finite if it contains a finite number of elements.
- A set that is not finite is called an infinite set .
- Two ways to describe sets.
(1) Listing method. Eg. $\{2,1,3,0,5\}$
(2) Rule method (Set builder method). Eg. $\{x \in \mathbb{Z} \mid 2 \leq x \leq 8\}$

Exercise 1

© Describe numbers between 0 and 100 using a set.

- Two sets A and B are equal if they have exactly the same elements and it writes $A=B$.
($A \neq B$ means "sets A and B do not have exactly the same elements.")

Exercise 1

(1) Describe numbers between 0 and 100 using a set.

Two sets A and B are equal if they have exactly the same $(A \neq B$ means "sets A and B do not have exactly the same elements.") If each element of a set A is also an element of set B, we say that A is a subset of B and write $A \subset B$. ($A \not \subset B$ means A is not a subset of B.)

Exercise 1

(1) Describe numbers between 0 and 100 using a set.

- Two sets A and B are equal if they have exactly the same elements and it writes $A=B$. ($A \neq B$ means "sets A and B do not have exactly the same elements.")

If each element of a set A is also an element of set B, we say that

Exercise 1

(1) Describe numbers between 0 and 100 using a set.

- Two sets A and B are equal if they have exactly the same elements and it writes $A=B$. ($A \neq B$ means "sets A and B do not have exactly the same elements.")
- If each element of a set A is also an element of set B, we say that A is a subset of B and write $A \subset B$.
($A \not \subset B$ means A is not a subset of B.)

Sets Operations

- The union of sets A and B, denoted by $A \cup B$, is the set of all elements that are in A or B.

- The intersection of sets A and B, denoted by $A \cap B$, is the set of all elements that are in A and B.

Sets Operations

- The union of sets A and B, denoted by $A \cup B$, is the set of all elements that are in A or B.
$A \cup B=\{x \mid x \in A$ or $x \in B\}$
The intersection of sets A and B, denoted by $A \cap B$, is the set of all elements that are in A and B.

Sets Operations

- The union of sets A and B, denoted by $A \cup B$, is the set of all elements that are in A or B.
$A \cup B=\{x \mid x \in A$ or $x \in B\}$
- The intersection of sets A and B, denoted by $\mathrm{A} \cap B$, is the set of all elements that are in A and B.
$A \cap B=\{x \mid x \in A$ and $x \in B\}$
- If $A \cap B=\emptyset$ then say A and B are disjoint.

The set of all elements under consideration is called the universal set, denoted bv U.

The complement of set A, denoted by A^{\prime}, is the set of all elements

 in U that are not in A.- If $A \cap B=\emptyset$ then say A and B are disjoint.
- The set of all elements under consideration is called the universal set, denoted by U.

- If $A \cap B=\emptyset$ then say A and B are disjoint.
- The set of all elements under consideration is called the universal set, denoted by U.
- The complement of set A, denoted by A^{\prime}, is the set of all elements in U that are not in A.
$A^{\prime}=\{x \in U \mid x \notin B\}$

Exercise 2

(1) State true or false.

Exercise 2

(1) State true or false.
(1) $0 \in\{-1,1\}$
(2) $\emptyset \subset\{100\}$
(3) $\emptyset \in\{0\}$

Sets of numbers

- The set of natural numbers : $\mathbb{N}=\{1,2,3, \ldots\}$

- The set of integers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,3, \ldots\}$

Sets of numbers

- The set of natural numbers : $\mathbb{N}=\{1,2,3, \ldots\}$

Sets of numbers

- The set of natural numbers : $\mathbb{N}=\{1,2,3, \ldots\}$
- The set of integers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,3, \ldots\}$

Sets of numbers

- The set of natural numbers : $\mathbb{N}=\{1,2,3, \ldots\}$
- The set of integers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,3, \ldots\}$
- The set of rational numbers: $\mathbb{Q}=\left\{\frac{p}{q}\right.$ where p, q are integers, $\left.q \neq 0\right\}$

Sets of numbers

- The set of natural numbers : $\mathbb{N}=\{1,2,3, \ldots\}$
- The set of integers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,3, \ldots\}$
- The set of rational numbers: $\mathbb{Q}=\left\{\frac{p}{q}\right.$ where p, q are integers, $\left.q \neq 0\right\}$
- The set of irrational numbers: $\mathbb{R} \backslash \mathbb{Q}$

The set of real numbers:

Sets of numbers

- The set of natural numbers : $\mathbb{N}=\{1,2,3, \ldots\}$
- The set of integers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,3, \ldots\}$
- The set of rational numbers: $\mathbb{Q}=\left\{\frac{p}{q}\right.$ where p, q are integers, $\left.q \neq 0\right\}$
- The set of irrational numbers: $\mathbb{R} \backslash \mathbb{Q}$
- The set of real numbers: \mathbb{R}

Sets of numbers

- The set of natural numbers : $\mathbb{N}=\{1,2,3, \ldots\}$
- The set of integers: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,3, \ldots\}$
- The set of rational numbers: $\mathbb{Q}=\left\{\frac{p}{q}\right.$ where p, q are integers, $\left.q \neq 0\right\}$
- The set of irrational numbers: $\mathbb{R} \backslash \mathbb{Q}$
- The set of real numbers: \mathbb{R}
- The set of complex numbers: $\mathbb{C}=\{a+b i$ where $a, b \in \mathbb{R}$ and $i=\sqrt{-1}\}$

Order of operations

PEMDAS:

(1) Parenthesis

Order of operations

PEMDAS:

(1) Parenthesis
(2) Exponents
(3) Multiplication, Division (from left to right)

Order of operations

PEMDAS:

(1) Parenthesis
(2) Exponents
(3) Multiplication, Division (from left to right)
(4) Addition, Subtraction (from left to right)

Order of operations

PEMDAS:

(1) Parenthesis
(2) Exponents
(3) Multiplication, Division (from left to right)
(9) Addition, Subtraction (from left to right)

Order of operations

PEMDAS:

(1) Parenthesis
(2) Exponents
(3) Multiplication, Division (from left to right)
(4) Addition, Subtraction (from left to right)

Exercise 3
What is $25^{\frac{1}{2}}-6 \div 2(1+2)+1$?

Interval notation

> An interval is a set of real numbers with the property that any number that lies between two numbers in the set is also included in the set.

Interval notation

- An interval is a set of real numbers with the property that any number that lies between two numbers in the set is also included in the set.

Interval notation

- An interval is a set of real numbers with the property that any number that lies between two numbers in the set is also included in the set.
- Closed interval $[a, b]=\{x \in \mathbb{R}: \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$

Interval notation

- An interval is a set of real numbers with the property that any number that lies between two numbers in the set is also included in the set.
- Closed interval $[a, b]=\{x \in \mathbb{R}: \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$
- Open interval $(a, b)=\{x \in \mathbb{R}: \mathrm{a}<\mathrm{x}<\mathrm{b}\}$
- Half open half closed interval $(a, b]=\{x \in \mathbb{R}: a<x \leq b\}$

Interval notation

- An interval is a set of real numbers with the property that any number that lies between two numbers in the set is also included in the set.
- Closed interval $[a, b]=\{x \in \mathbb{R}: \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$
- Open interval $(a, b)=\{x \in \mathbb{R}: \mathrm{a}<\mathrm{x}<\mathrm{b}\}$
- Half open half closed interval $(a, b]=\{x \in \mathbb{R}: a<x \leq b\}$
- $[a, \infty)=\{x \in \mathbb{R}: x \geq a\}$

Exercise 4

Describe the data set $\{2,3,4,5\} \cup(4,9] \cap[-1,10)$.

Outline

(1) Preliminaries

(2) Functions

(3) Categories of functions

Functions

- A quantity whose value can change is known as a variable. - A quantity whose value cannot change is known as a constant. Let A and B be two given nonempty sets. A rule denoted by f is called a function if it corresponds each element (input) in A to a unique element (output) in B.

Functions

- A quantity whose value can change is known as a variable.
- A quantity whose value cannot change is known as a constant.

(input) in A to a unique element (output) in B.

Functions

- A quantity whose value can change is known as a variable.
- A quantity whose value cannot change is known as a constant.

Definition
Let A and B be two given nonempty sets.
A rule denoted by f is called a function if it corresponds each element (input) in A to a unique element (output) in B.

Functions

- A quantity whose value can change is known as a variable.
- A quantity whose value cannot change is known as a constant.

Definition

Let A and B be two given nonempty sets.
A rule denoted by f is called a function if it corresponds each element (input) in A to a unique element (output) in B.

The set A is called the domain of f, set B is called the codomain of f, and the set of all the elements that return by f is called the range of f.

Ways to represent a function

A function may be expressed:

- As a set of ordered pairs

- Numerically (by a table)
- Visually (by a diagram or graph)
- Algebraically (by a formula)

Ways to represent a function

A function may be expressed:

- As a set of ordered pairs
- Numerically (by a table)
- Visually (by a diagram or graph)
- Algebraically (by a formula)

Exercise 5

Determine each relation given is a function.

Exercise 5

Determine each relation given is a function.

$$
\text { (1) } f=\{(-1,-1),(0,1),(1,1)\}
$$

Exercise 5

Determine each relation given is a function.
(1) $f=\{(-1,-1),(0,1),(1,1)\}$
(2) $f=\{(-1,-1),(0,1),(-1,1)\}$

Exercise 5

Determine each relation given is a function.
(1) $f=\{(-1,-1),(0,1),(1,1)\}$
(2) $f=\{(-1,-1),(0,1),(-1,1)\}$
(3) $f=\{(-1,0),(0,1),(1,1)\}$

Exercise 5

Determine each relation given is a function.
(1) $f=\{(-1,-1),(0,1),(1,1)\}$
(2) $f=\{(-1,-1),(0,1),(-1,1)\}$
(0) $f=\{(-1,0),(0,1),(1,1)\}$
(a) $x=y^{2}$

Exercise 5

Determine each relation given is a function.
(1) $f=\{(-1,-1),(0,1),(1,1)\}$
(2) $f=\{(-1,-1),(0,1),(-1,1)\}$
(0) $f=\{(-1,0),(0,1),(1,1)\}$
(1) $x=y^{2}$
(0) $y=x^{2}$

Exercise 5

Determine each relation given is a function.
(1) $f=\{(-1,-1),(0,1),(1,1)\}$
(2) $f=\{(-1,-1),(0,1),(-1,1)\}$
(0) $f=\{(-1,0),(0,1),(1,1)\}$
(9) $x=y^{2}$
(6) $y=x^{2}$
(C) $x^{2}+(y-2)^{2}=16$

Function notation

Notation

$$
y=f(x)(\text { read } y \text { equals } f \text { of } x)
$$

- Mean for the given input value x the function returns y or $f(x)$ as the output.

x is called the independent variable and y is called the dependent

 variahle
Function notation

Notation

$$
y=f(x)(\text { read } y \text { equals } f \text { of } x)
$$

- Mean for the given input value x the function returns y or $f(x)$ as the output.
- x is called the independent variable and y is called the dependent variable.

Exercise 6

Let $f(x)=2 x^{3}+5 x-4$
(1) Evaluate $f(0), f(-2 \pi), f(2 t)$ and $f(p-3)$
(2) Identify the domain and range of f.

Exercise 6

Let $f(x)=2 x^{3}+5 x-4$
(1) Evaluate $f(0), f(-2 \pi), f(2 t)$ and $f(p-3)$
(2) Identify the domain and range of f.

Domain of a function

The domain of a function is the set of all real numbers that return a real number as the output.

Find the domain of each function. Give the answer in interval notation

Domain of a function

The domain of a function is the set of all real numbers that return a real number as the output.

Exercise 7

Find the domain of each function. Give the answer in interval notation.
(1) $f(x)=\sqrt{2 x-10}$

Domain of a function

The domain of a function is the set of all real numbers that return a real number as the output.

Exercise 7

Find the domain of each function. Give the answer in interval notation.
(1) $f(x)=\sqrt{2 x-10}$
(2) $g(x)=\frac{2 x}{x+5}$

Domain of a function

The domain of a function is the set of all real numbers that return a real number as the output.

Exercise 7

Find the domain of each function. Give the answer in interval notation.
(1) $f(x)=\sqrt{2 x-10}$
(2) $g(x)=\frac{2 x}{x+5}$
(3) $h(x)=e$

Domain of a function

The domain of a function is the set of all real numbers that return a real number as the output.

Exercise 7

Find the domain of each function. Give the answer in interval notation.
(1) $f(x)=\sqrt{2 x-10}$
(2) $g(x)=\frac{2 x}{x+5}$
(3) $h(x)=e$
(4) $F(x)=\ln (x-3)$

Operations on functions

Let f be a function with domain $D(f)$ and g be a function with domain

 D(a).
- Sum : $(f+g)(x):=f(x)+g(x)$ where $D(f+g)=D(f) \cap D(g)$

Operations on functions

Let f be a function with domain $D(f)$ and g be a function with domain D(g).

Operations on functions

Let f be a function with domain $\mathrm{D}(\mathrm{f})$ and g be a function with domain D(g).

- Sum : $(f+g)(x):=f(x)+g(x)$ where $D(f+g)=D(f) \cap D(g)$

Operations on functions

Let f be a function with domain $D(f)$ and g be a function with domain $\mathrm{D}(\mathrm{g})$.

- Sum : $(f+g)(x):=f(x)+g(x)$ where $D(f+g)=D(f) \cap D(g)$
- Difference : $(f-g)(x):=f(x)-g(x)$ where $D(f-g)=D(f) \cap D(g)$

Operations on functions

Let f be a function with domain $D(f)$ and g be a function with domain $\mathrm{D}(\mathrm{g})$.

- Sum : $(f+g)(x):=f(x)+g(x)$ where $D(f+g)=D(f) \cap D(g)$
- Difference : $(f-g)(x):=f(x)-g(x)$ where $D(f-g)=D(f) \cap D(g)$
- Product $:(f g)(x):=f(x) g(x)$ where $D(f g)=D(f) \cap D(g)$

Operations on functions

Let f be a function with domain $D(f)$ and g be a function with domain $\mathrm{D}(\mathrm{g})$.

- Sum : $(f+g)(x):=f(x)+g(x)$ where $D(f+g)=D(f) \cap D(g)$
- Difference : $(f-g)(x):=f(x)-g(x)$ where $D(f-g)=D(f) \cap D(g)$
- Product $:(f g)(x):=f(x) g(x)$ where $D(f g)=D(f) \cap D(g)$
- Quotient: $(f \div g)(x):=f(x) \div g(x)$ where $D(f \div g)=\{x \in \mathrm{D}(\mathrm{f}) \cap$ $\mathrm{D}(\mathrm{g}): \mathrm{g}(\mathrm{x}) \neq 0\}$

Operations on functions

Let f be a function with domain $D(f)$ and g be a function with domain $\mathrm{D}(\mathrm{g})$.

- Sum : $(f+g)(x):=f(x)+g(x)$ where $D(f+g)=D(f) \cap D(g)$
- Difference $:(f-g)(x):=f(x)-g(x)$ where $D(f-g)=D(f) \cap D(g)$
- Product $:(f g)(x):=f(x) g(x)$ where $D(f g)=D(f) \cap D(g)$
- Quotient: $(f \div g)(x):=f(x) \div g(x)$ where $D(f \div g)=\{x \in \mathrm{D}(\mathrm{f}) \cap$ $\mathrm{D}(\mathrm{g}): \mathrm{g}(\mathrm{x}) \neq 0\}$
- Composition: $(f \circ g)(x):=f[g(x)]$ where $D(f \circ g)=\{x \in D(g): g(x) \in D(f)\}$

Exercise

Let $f(x)=\sqrt{x+1}$ and $g(x)=\frac{1}{x-1}$. Find indicated functions and give domain of each function.

Exercise

Let $f(x)=\sqrt{x+1}$ and $g(x)=\frac{1}{x-1}$. Find indicated functions and give domain of each function.
($) f+g$

Exercise

Let $f(x)=\sqrt{x+1}$ and $g(x)=\frac{1}{x-1}$. Find indicated functions and give domain of each function.
(1) $f+g$
(2) fg

Exercise

Let $f(x)=\sqrt{x+1}$ and $g(x)=\frac{1}{x-1}$. Find indicated functions and give domain of each function.
(1) $f+g$
(2) fg
(3) $g-f$

Exercise

Let $f(x)=\sqrt{x+1}$ and $g(x)=\frac{1}{x-1}$. Find indicated functions and give domain of each function.
(1) $f+g$
(2) $f g$
(3) $g-f$
(1) $f \circ g$

Exercise

Let $f(x)=\sqrt{x+1}$ and $g(x)=\frac{1}{x-1}$. Find indicated functions and give domain of each function.
(1) $f+g$
(2) $f g$
(3) $g-f$
(1) $f \circ g$
(6) $g \circ f$

Exercise

Let $f(x)=\sqrt{x+1}$ and $g(x)=\frac{1}{x-1}$. Find indicated functions and give domain of each function.
(1) $f+g$
(2) fg
(3) $g-f$
(4) $f \circ g$
(5) $g \circ f$
(6) $(f \circ g)(3)$

Elementary functions

Exercise 9

Graph each function. Give domain and range.

- Constant function $f(x)=c$ where c is any constant.

Elementary functions

Exercise 9

Graph each function. Give domain and range.

Constant function $f(x)=c$ where c is any constant.

Elementary functions

Exercise 9

Graph each function. Give domain and range.

- Constant function $f(x)=c$ where c is any constant.

Elementary functions

Exercise 9

Graph each function. Give domain and range.

- Constant function $f(x)=c$ where c is any constant.
- Identity function $f(x)=x$
- Squaring function $f(x)=x^{2}$ - Cubing function $f(x)=x^{3}$

Elementary functions

Exercise 9

Graph each function. Give domain and range.

- Constant function $f(x)=c$ where c is any constant.
- Identity function $f(x)=x$
- Squaring function $f(x)=x^{2}$
- Cubing function $f(x)=x^{3}$

Elementary functions

Exercise 9

Graph each function. Give domain and range.

- Constant function $f(x)=c$ where c is any constant.
- Identity function $f(x)=x$
- Squaring function $f(x)=x^{2}$
- Cubing function $f(x)=x^{3}$

Elementary functions

Exercise 9

Graph each function. Give domain and range.

- Constant function $f(x)=c$ where c is any constant.
- Identity function $f(x)=x$
- Squaring function $f(x)=x^{2}$
- Cubing function $f(x)=x^{3}$
- Reciprocal function $f(x)=\frac{1}{x}$

Elementary functions

- Absolute value function $f(x)=\mid x$ - Square root function $f(x)=\sqrt{x}$

Elementary functions

- Absolute value function $f(x)=|x|$

Elementary functions

- Absolute value function $f(x)=|x|$
- Square root function $f(x)=\sqrt{x}$
- Unit step function

Elementary functions

- Absolute value function $f(x)=|x|$
- Square root function $f(x)=\sqrt{x}$
- Cube root function $f(x)=x^{\frac{1}{3}}$
- Unit step function
- Greatest integer function $f(x)=\lfloor x\rfloor$ (=largest integer less than or

Elementary functions

- Absolute value function $f(x)=|x|$
- Square root function $f(x)=\sqrt{x}$
- Cube root function $f(x)=x^{\frac{1}{3}}$
- Unit step function

$$
f(x)= \begin{cases}1, & \text { if } x \geq 0 \\ 0, & \text { Otherwise }\end{cases}
$$

Elementary functions

- Absolute value function $f(x)=|x|$
- Square root function $f(x)=\sqrt{x}$
- Cube root function $f(x)=x^{\frac{1}{3}}$
- Unit step function

$$
f(x)= \begin{cases}1, & \text { if } x \geq 0 \\ 0, & \text { Otherwise }\end{cases}
$$

- Greatest integer function $f(x)=\lfloor x\rfloor$ (=largest integer less than or equal to x)

Properties of functions

Let $c>0$,

- The graph of $f(x+c)$ will be a shift of the graph of $f(x)$ to the left by c units.

The graph of $f(x-c)$ will be a shift of the graph of $f(x)$ to the right by c units.

The graph of $f(x)+c$ will be a shift of the graph of $f(x)$ upward by c units.

Properties of functions

Let $c>0$,

- The graph of $f(x+c)$ will be a shift of the graph of $f(x)$ to the left by c units.
- The graph of $f(x-c)$ will be a shift of the graph of $f(x)$ to the right by c units.

Properties of functions

Let $c>0$,

- The graph of $f(x+c)$ will be a shift of the graph of $f(x)$ to the left by c units.
- The graph of $f(x-c)$ will be a shift of the graph of $f(x)$ to the right by c units.
- The graph of $f(x)+c$ will be a shift of the graph of $f(x)$ upward by c units.

Properties of functions

Let $c>0$,

- The graph of $f(x+c)$ will be a shift of the graph of $f(x)$ to the left by c units.
- The graph of $f(x-c)$ will be a shift of the graph of $f(x)$ to the right by c units.
- The graph of $f(x)+c$ will be a shift of the graph of $f(x)$ upward by c units.
- The graph of $f(x)-c$ will be a shift of the graph of $f(x)$ downward by c units.

Properties of functions

Let $c>0$,

- The graph of $f(x+c)$ will be a shift of the graph of $f(x)$ to the left by c units.
- The graph of $f(x-c)$ will be a shift of the graph of $f(x)$ to the right by c units.
- The graph of $f(x)+c$ will be a shift of the graph of $f(x)$ upward by c units.
- The graph of $f(x)-c$ will be a shift of the graph of $f(x)$ downward by c units.
- The graph of $c f(x)(c>1)$ will be a vertical stretch of the graph of $f(x)$ by a factor of c.

Properties of functions

> - The graph of $\operatorname{cf}(x)(0<c<1)$ will be a vertical compress of graph of $f(x)$ by a factor of c.
> - The graph of $f(c x)(c>1)$ will be a horizontal compress of the graph of $f(x)$ by a factor of c.

Properties of functions

- The graph of $c f(x)(0<c<1)$ will be a vertical compress of graph of $f(x)$ by a factor of c.

The graph of $f(c x)(c>1)$ will be a horizontal compress of the graph of $f(x)$ by a factor of c.

Properties of functions

- The graph of $c f(x)(0<c<1)$ will be a vertical compress of graph of $f(x)$ by a factor of c.
- The graph of $f(c x)(c>1)$ will be a horizontal compress of the graph of $f(x)$ by a factor of c.

Properties of functions

- The graph of $c f(x)(0<c<1)$ will be a vertical compress of graph of $f(x)$ by a factor of c.
- The graph of $f(c x)(c>1)$ will be a horizontal compress of the graph of $f(x)$ by a factor of c.
- The graph of $f(c x)(0<c<1)$ will be a horizontal stretch of the graph of $f(x)$ by a factor of c.

Properties of functions

- The graph of $c f(x)(0<c<1)$ will be a vertical compress of graph of $f(x)$ by a factor of c.
- The graph of $f(c x)(c>1)$ will be a horizontal compress of the graph of $f(x)$ by a factor of c.
- The graph of $f(c x)(0<c<1)$ will be a horizontal stretch of the graph of $f(x)$ by a factor of c.
- The graph of $-f(x)$ will be a reflection of the graph of $f(x)$ across the x-axis.

Properties of functions

- The graph of $c f(x)(0<c<1)$ will be a vertical compress of graph of $f(x)$ by a factor of c.
- The graph of $f(c x)(c>1)$ will be a horizontal compress of the graph of $f(x)$ by a factor of c.
- The graph of $f(c x)(0<c<1)$ will be a horizontal stretch of the graph of $f(x)$ by a factor of c.
- The graph of $-f(x)$ will be a reflection of the graph of $f(x)$ across the x-axis.
- The graph of $f(-x)$ will be a reflection of the graph of $f(x)$ across the y-axis.

Exercise 10

The graph of $f(x)=|x| ; x \in[-3 ; 3]$, vertically stretched by a factor 2 , reflected across the x-axis, shitted 5 units upward.

Give the equation, domain, range and graph of the resulting function.

Exercise 10

The graph of $f(x)=|x| ; x \in[-3 ; 3]$, vertically stretched by a factor 2 , reflected across the x-axis, shitted 5 units upward.

Give the equation, domain, range and graph of the resulting function.

One-to-one functions

Definition

A function for which every element of the range of the function corresponds to exactly one element of the domain is called a one-to-one function.

One-to-one functions

Definition

A function for which every element of the range of the function corresponds to exactly one element of the domain is called a one-to-one function.

- f is one-to-one if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$ for all x_{1}, x_{2} in the domain of f.

One-to-one functions

Definition

A function for which every element of the range of the function corresponds to exactly one element of the domain is called a one-to-one function.

- f is one-to-one if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$ for all x_{1}, x_{2} in the domain of f.
- A function is one-to-one if no horizontal line intersects the graph of the function more than once.

One-to-one functions

Definition

A function for which every element of the range of the function corresponds to exactly one element of the domain is called a one-to-one function.

- f is one-to-one if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$ for all x_{1}, x_{2} in the domain of f.
- A function is one-to-one if no horizontal line intersects the graph of the function more than once.

Exercise 11

Determine each function is one-to-one.
(a) $f(x)=3(x+1)^{2}$ (b) $g(x)=\sqrt{4 x+1}$

Inverse of a function

Definition

Let f and g be two one-to-one functions and the domain of f is $D(f)$,

 domain of g is $D(g)$, range of f is $R(f)$, and range of g is $R(g)$.Suppose $D(g)=R(f)$ and $D(f)=R(g)$. Then, f and g are inverse functions of each other if $(f \circ g)(x)=(g \circ f)(x)=x$ for all x.

- The inverse of f is denoted by f^{-1}

Inverse of a function

Definition

Let f and g be two one-to-one functions and the domain of f is $D(f)$, domain of g is $D(g)$, range of f is $R(f)$, and range of g is $R(g)$.

Suppose $D(g)=R(f)$ and $D(f)=R(g)$. Then, f and g are inverse functions of each other if $(f \circ g)(x)=(g \circ f)(x)=x$ for all x.

Inverse of a function

Definition

Let f and g be two one-to-one functions and the domain of f is $D(f)$, domain of g is $D(g)$, range of f is $R(f)$, and range of g is $R(g)$.

Suppose $D(g)=R(f)$ and $D(f)=R(g)$. Then, f and g are inverse functions of each other if $(f \circ g)(x)=(g \circ f)(x)=x$ for all x.

- The inverse of f is denoted by f^{-1}.

Inverse of a function

Definition

Let f and g be two one-to-one functions and the domain of f is $D(f)$, domain of g is $D(g)$, range of f is $R(f)$, and range of g is $R(g)$.

Suppose $D(g)=R(f)$ and $D(f)=R(g)$. Then, f and g are inverse functions of each other if $(f \circ g)(x)=(g \circ f)(x)=x$ for all x.

- The inverse of f is denoted by f^{-1}.
- If the ordered pair $(a ; b)$ is on the graph of f, then (b, a) is on the graph of f^{-1}.

Inverse of a function

Definition

Let f and g be two one-to-one functions and the domain of f is $D(f)$, domain of g is $D(g)$, range of f is $R(f)$, and range of g is $R(g)$.

Suppose $D(g)=R(f)$ and $D(f)=R(g)$. Then, f and g are inverse functions of each other if $(f \circ g)(x)=(g \circ f)(x)=x$ for all x.

- The inverse of f is denoted by f^{-1}.
- If the ordered pair $(a ; b)$ is on the graph of f, then (b, a) is on the graph of f^{-1}.
- The graph of f and f^{-1} are reflections across the line $y=x$:

Exercise 12

Let $f(x)=\frac{2 x-3}{x+4}$

Exercise 12

Let $f(x)=\frac{2 x-3}{x+4}$
Find the f^{-1}

Odd and even functions

Definition

A function f is even if $f(-x)=f(x)$ for all x in the domain of f.

A function f is odd if $f(-x)=-f(x)$ for all x in the domain of f.

Odd and even functions

Definition

A function f is even if $f(-x)=f(x)$ for all x in the domain of f.
A function f is odd if $f(-x)=-f(x)$ for all x in the domain of f

Odd and even functions

Definition
A function f is even if $f(-x)=f(x)$ for all x in the domain of f.
A function f is odd if $f(-x)=-f(x)$ for all x in the domain of f.

- The graph of an even function is symmetric with respect to the y-axis.

The graph of an odd function is symmetric with respect to the origin.

- The graph of an even function is symmetric with respect to the y-axis.
- If (a, b) is on the graph of an even function then $(-a, b)$ is also on the graph.

- The graph of an even function is symmetric with respect to the y-axis.
- If (a, b) is on the graph of an even function then $(-a, b)$ is also on the graph.
- The graph of an odd function is symmetric with respect to the origin.
- The graph of an even function is symmetric with respect to the y-axis.
- If (a, b) is on the graph of an even function then $(-a, b)$ is also on the graph.
- The graph of an odd function is symmetric with respect to the origin.
- If (a, b) is on the graph of an even function then $(-a,-b)$ is also on the graph.

Exercise 13

Determine each function is even, odd or neither.

Exercise 13

Determine each function is even, odd or neither.
(1) $f(x)=3 x^{2}-2$

Exercise 13

Determine each function is even, odd or neither.
(1) $f(x)=3 x^{2}-2$
(2) $g(x)=2 x^{3}+5 x$

Exercise 13

Determine each function is even, odd or neither.
(1) $f(x)=3 x^{2}-2$
(2) $g(x)=2 x^{3}+5 x$
(3) $h(x)=4 x-3$

Periodic functions

Definition

> A function f is called periodic if there is a positive constant T such that $f(x+T)=f(x)$ for all x in the domain of f. T is called the period. (If there exists a least positive constant P with this property, it is called the fundamental period.)

Periodic functions

Definition

A function f is called periodic if there is a positive constant T such that $f(x+T)=f(x)$ for all x in the domain of $f . T$ is called the period. (If there exists a least positive constant P with this property, it is called the fundamental period.)

Periodic functions

Definition

A function f is called periodic if there is a positive constant T such that $f(x+T)=f(x)$ for all x in the domain of $f . T$ is called the period. (If there exists a least positive constant P with this property, it is called the fundamental period.)

Exercise 14

An automated robot transports building materials between two
\square

Periodic functions

Definition

A function f is called periodic if there is a positive constant T such that $f(x+T)=f(x)$ for all x in the domain of $f . T$ is called the period. (If there exists a least positive constant P with this property, it is called the fundamental period.)

Exercise 14

An automated robot transports building materials between two locations, which are 6 km apart. It takes the robot two hours to reach the materials and two hours to return. Neglecting loading and unloading time, draw a displacement versus time graph that shows the robot performing 4 complete trips. Identify the period of this graph.

Outline

(1) Preliminaries

(2) Functions

(3) Categories of functions

Categories of functions

- Linear functions

- Quadratic functions

Categories of functions

- Linear functions

Quadratic functions

Categories of functions

- Linear functions
- Quadratic functions
- Polynomial functions

Categories of functions

- Linear functions
- Quadratic functions
- Polynomial functions

Rational functions

- Exponential functions

Categories of functions

- Linear functions
- Quadratic functions
- Polynomial functions
- Rational functions
- Exponential functions
- Logarithmic functions

Categories of functions

- Linear functions
- Quadratic functions
- Polynomial functions
- Rational functions
- Exponential functions
- Logarithmic functions - Hyperbolic functions

Categories of functions

- Linear functions
- Quadratic functions
- Polynomial functions
- Rational functions
- Exponential functions
- Logarithmic functions
- Hyperbolic functions

Categories of functions

- Linear functions
- Quadratic functions
- Polynomial functions
- Rational functions
- Exponential functions
- Logarithmic functions
- Hyperbolic functions

Categories of functions

- Linear functions
- Quadratic functions
- Polynomial functions
- Rational functions
- Exponential functions
- Logarithmic functions
- Hyperbolic functions
- Trigonometric functions

Linear functions

Definition

A function f is linear if it has the form $f(x)=a x+b$ where a, b are constants $(a \neq 0) a$ is known as the slope of the function.

\square
Graph f and locate x-intercept and y-intercept.

Linear functions

Definition

A function f is linear if it has the form $f(x)=a x+b$ where a, b are constants $(a \neq 0) a$ is known as the slope of the function.

Exercise 15

Find the equation of a linear function f which passes through the points $(2,-5)$ and $(4,7)$.

Graph f and locate x-intercept and y-intercept.

Quadratic functions

Definition

A function f is quadratic if it has the form $f(x)=a x^{2}+b x+c$ where a, b, c are constants $(a \neq 0)$.

Quadratic functions

Definition

A function f is quadratic if it has the form $f(x)=a x^{2}+b x+c$ where a, b, c are constants $(a \neq 0)$.

Exercise 16

Let $f(x)=3 x^{2}-7 x-2$: Complete square to write $f(x)=a(x-h)^{2}+k$ form. Give the minimum value of f. Graph f and give zeros of f (A number c is a zero of a function if $f(c)=0$).

Polynomial functions

Definition

A function f is a polynomial of degree n if it has the form $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+. .+a_{0}$ where $a_{n}, a_{n-1}, \ldots, a_{0}$ are constants $\left(a_{n} \neq 0\right)$ and $n \in \mathbb{N}$.

Polynomial functions

Definition

A function f is a polynomial of degree n if it has the form
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+. .+a_{0}$ where $a_{n}, a_{n-1}, \ldots, a_{0}$ are constants $\left(a_{n} \neq 0\right)$ and $n \in \mathbb{N}$.

Exercise 17
Let $f(x)=3(x+1)^{3}(2 x-7)^{2}(x-10)$. Graph f.
Solve the inequality $f(x)>0$.

Rational functions

Definition

A function f is rational if it has the form $f(x)=\frac{p(x)}{q(x)}$ (where p and q are polynomials and $q(x) \neq 0)$

Rational functions

Definition

A function f is rational if it has the form $f(x)=\frac{p(x)}{q(x)}$ (where p and q are polynomials and $q(x) \neq 0)$

- The line $x=a$ is called a vertical asymptote if f approaches $\pm \infty$ as x approaches a.

Rational functions

Definition

A function f is rational if it has the form $f(x)=\frac{p(x)}{q(x)}$ (where p and q are polynomials and $q(x) \neq 0)$

- The line $x=a$ is called a vertical asymptote if f approaches $\pm \infty$ as x approaches a.
- The line $y=b$ is called a horizontal asymptote if f approached b as x approached $\pm \infty$.

Rational functions

Definition

A function f is rational if it has the form $f(x)=\frac{p(x)}{q(x)}$ (where p and q are polynomials and $q(x) \neq 0)$

- The line $x=a$ is called a vertical asymptote if f approaches $\pm \infty$ as x approaches a.
- The line $y=b$ is called a horizontal asymptote if f approached b as x approached $\pm \infty$.

Exercise 18

Let $f(x)=\frac{x^{2}-3 x+2}{(2 x-5)(x+5)}$. Give domain of f. Graph f.
Find vertical asymptotes and horizontal asymptotes of f.

Exponential function

Definition

A function f is exponential if it has the form $f(x)=a x$ where $a>0, a \neq 1$ is a constant called the base of f. (When $\mathrm{a}=\mathrm{e}$ it is called the natural exponential function.)

Exercise 19

Graph

Exercise 19

Graph

- $f(x)=2^{1-x}$

Exercise 19

Graph

- $f(x)=2^{1-x}$
- $g(x)=3-\left(\frac{1}{2}\right)^{x}$

Exercise 19

Graph

- $f(x)=2^{1-x}$
- $g(x)=3-\left(\frac{1}{2}\right)^{x}$
- $h(x)=3 \cdot 2^{x-3}$

Logarithmic functions

Definition

If $x=a^{x}$ then $y=\log _{a} \mathrm{x}$ is called the logarithmic function of base $a(a>0, a \neq 1)$.
(When $a=e$ it is written $\ln x$ and called the natural logarithmic function.)

- The functions $f(x)=a^{x}$ and $g(x)=\log _{a} x$ are inverse functions of each other.

Exercise 20

Graph
(1) $f(x)=\log (x+1)$

- The functions $f(x)=a^{x}$ and $g(x)=\log _{a} x$ are inverse functions of each other.

Exercise 20

Graph
(1) $f(x)=\log (x+1)$
(2) $g(x)=\log |x-1|$

- The functions $f(x)=a^{x}$ and $g(x)=\log _{a} x$ are inverse functions of each other.

Exercise 20

Graph
(1) $f(x)=\log (x+1)$
(2) $g(x)=\log |x-1|$
(3) $h(x)=2-\ln (2 x-3)$

Exercise 21: Solve

- $2 \ln \sqrt{x}-\ln (1-x)-2=0$

Exercise 21: Solve

- $2 \ln \sqrt{x}-\ln (1-x)-2=0$
- $e^{\ln (x+1)}-x e^{3 x+5}=1$

Hyperbolic functions

Definition

The hyperbolic functions are defined as $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$ and $\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$

Exercise 22

Graph coshx and sinhx. Give their domain and range and comment on even or oddness.

- Other hyperbolic functions are defined as:

Exercise 22

Graph coshx and sinhx. Give their domain and range and comment on even or oddness.

- Other hyperbolic functions are defined as:

$$
\begin{gathered}
\tanh x=\frac{\sinh x}{\cosh x} \\
\operatorname{csch} x=\frac{1}{\sinh x} \\
\operatorname{sech} x=\frac{1}{\cosh x} \\
\text { and } \operatorname{coth} x=\frac{\cosh x}{\sinh x}
\end{gathered}
$$

Exercise 23

Prove the following identities.

- $\cosh ^{2} x-\sinh ^{2} x=1$ for all x.
- $\sinh (-x)=-\sinh (x)$

Exercise 23

Prove the following identities.

- $\cosh ^{2} x-\sinh ^{2} x=1$ for all x.
- $\sinh (-x)=-\sinh (x)$

Exercise 23

Prove the following identities.

- $\cosh ^{2} x-\sinh ^{2} x=1$ for all x.
- $\sinh (-x)=-\sinh (x)$
- $\cosh (-x)=\cosh (x)$

Exercise 23

Prove the following identities.

- $\cosh ^{2} x-\sinh ^{2} x=1$ for all x.
- $\sinh (-x)=-\sinh (x)$
- $\cosh (-x)=\cosh (x)$
- $1-\tanh ^{2} x=\operatorname{sech}^{2} x$

Exercise 23

Prove the following identities.

- $\cosh ^{2} x-\sinh ^{2} x=1$ for all x.
- $\sinh (-x)=-\sinh (x)$
- $\cosh (-x)=\cosh (x)$
- $1-\tanh ^{2} x=\operatorname{sech}^{2} x$
- $\sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y$

Exercise 23

Prove the following identities.

- $\cosh ^{2} x-\sinh ^{2} x=1$ for all x.
- $\sinh (-x)=-\sinh (x)$
- $\cosh (-x)=\cosh (x)$
- $1-\tanh ^{2} x=\operatorname{sech}^{2} x$
- $\sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y$
- $\cosh (x+y)=\cosh x \cosh y+\sinh x \sinh y$

Exercise

Exercise 23

Prove the following identities.

- $\cosh ^{2} x-\sinh ^{2} x=1$ for all x.
- $\sinh (-x)=-\sinh (x)$
- $\cosh (-x)=\cosh (x)$
- $1-\tanh ^{2} x=\operatorname{sech}^{2} x$
- $\sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y$
- $\cosh (x+y)=\cosh x \cosh y+\sinh x \sinh y$

Exercise

Express $2 e^{x}-e^{-x}$ in terms of coshx and $\sinh x$.

Exercise: Show that

- $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$

Exercise: Show that

- $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$
- $\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right)$

Exercise: Show that

- $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$
- $\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right)$
- $\tanh ^{-1}=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$

Trigonometric functions

Definition

One radian (rad) is the measure of a central angle that intercepts an arc s equal in length to the radius r of the circle. I.e., $\theta=\frac{s}{r}$ and, π rad $=180^{\circ}$.

Trigonometric functions

Definition

One radian (rad) is the measure of a central angle that intercepts an arc s equal in length to the radius r of the circle. I.e., $\theta=\frac{s}{r}$ and, π rad $=180^{\circ}$.

Exercise 26

For each angle in standard position, identify initial side, terminal side, angles measured counterclockwise or clockwise direction.

Exercise 26

For each angle in standard position, identify initial side, terminal side, angles measured counterclockwise or clockwise direction.

Let P be on the unit circle, centered at origin. Define the following

ratios as follows whenever they make sense.

Let P be on the unit circle, centered at origin. Define the following ratios as follows whenever they make sense.

$$
\sin \theta=y, \cos \theta=x, \tan \theta=\frac{y}{x} \csc \theta=\frac{1}{y}, \sec \theta=\frac{1}{x}, \cot \theta=\frac{x}{y}
$$

Exercise 27

Graph each function and give its domain, range, and period.

- $f(x)=\sin x$
- $f(x)=\cos x$
- $f(x)=\tan x$
- $f(x)=\csc x$
- $f(x)=\sec x$
- $f(x)=\cot x$
- $f(x)=\sin ^{-1} x$
- $f(x)=\cos ^{-1} x$
- $f(x)=\tan ^{-1} x$
- $f(x)=\csc ^{-1} x$
- $f(x)=\sec ^{-1} x$
- $f(x)=\cot ^{-1} x$

