Graph Theory and Its Applications

Dr. G.H.J. Lanel

Lecture 2

Outline

Outline

(1) Introduction to Graph Theory

- Isomorphic graphs
- Counting graphs
- Complement graph
- Line graph
- Euler tours
- Hamiltonian cycles
(2) Representing Graphs
- Matrix representation (Adjacency and Incidence)
- List representation
- Two graphs are isomorphic if there is a 1-1 correspondence between their vertex sets that preserves adjacencies and non-adjacencies.

- One must find a label numbering that makes the graphs identical.
- This problem is still believed to be NP hard.
- Two graphs are isomorphic if there is a 1-1 correspondence between their vertex sets that preserves adjacencies and non-adjacencies.

- One must find a label numbering that makes the graphs identical.
- Two graphs are isomorphic if there is a 1-1 correspondence between their vertex sets that preserves adjacencies and non-adjacencies.

- One must find a label numbering that makes the graphs identical.
- This problem is still believed to be NP hard.
- How many different simple graphs are there with n vertices?

- A graph with n vertices can have at most $n(n-1) / 2$ different edges and each of them can be present or not.

- Hence there can be at most $2^{n(n-1) / 2}$ graphs with n vertices.
- How many different simple graphs are there with n vertices?
- A graph with n vertices can have at most $n(n-1) / 2$ different edges and each of them can be present or not.

(3)
- Hence there can be at most $2^{n(n-1) / 2}$ graphs with n vertices. For $n=3$ only 4 of the graphs are different. (omitting the isomorphic ones)
- How many different simple graphs are there with n vertices?
- A graph with n vertices can have at most $n(n-1) / 2$ different edges and each of them can be present or not.

(3)
- Hence there can be at most $2^{n(n-1) / 2}$ graphs with n vertices.
\square isomorphic ones)
- How many different simple graphs are there with n vertices?
- A graph with n vertices can have at most $n(n-1) / 2$ different edges and each of them can be present or not.

- Hence there can be at most $2^{n(n-1) / 2}$ graphs with n vertices.
- For $n=3$ only 4 of the graphs are different. (omitting the isomorphic ones)
- With $n=4$ one finds eventually 11 different graphs after collapsing the isomorphic ones.

- Let there be T_{n} non-isomorphic graphs with n vertices.
- With $n=4$ one finds eventually 11 different graphs after collapsing the isomorphic ones.

- Let there be T_{n} non-isomorphic graphs with n vertices.

Then

$$
\frac{2^{n(n-1) / 2}}{n!} \leq T_{n} \leq 2^{n(n-1) / 2}
$$

The complement of $G=(V, E)$, denoted \bar{G}, is the graph $\bar{G}=\left(V, E^{\prime}\right)$ with same vertex set as G whose edges are precisely the edges missing from G.

Eg:- A graph and its complement graph

The complement of $G=(V, E)$, denoted \bar{G}, is the graph $\bar{G}=\left(V, E^{\prime}\right)$ with same vertex set as G whose edges are precisely the edges missing from G .

Eg:- A graph and its complement graph

The line graph $L(G)$ of a graph G has a vertex for each edge of G, and two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G have a vertex in common.

Eg:- A Graph and its line graph

The line graph $L(G)$ of a graph G has a vertex for each edge of G, and two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G have a vertex in common.

Eg:- A Graph and its line graph

- An eulerian trail in a graph is a trail that contains every edge of that graph.
- An eulerian tour is a closed eulerian trail.
- An eulerian graph is a graph that has an eulerian trail.
- An eulerian trail in a graph is a trail that contains every edge of that graph.
- An eulerian tour is a closed eulerian trail.
- An eulerian graph is a graph that has an eulerian trail.

Eg:-

The trail $T=\{a, e, b, a, f, b, c, f, g, d, c, a\}$ is an eulerian tour.

Theorem

A connected graph G with at least one edge has an euler tour if and only if the degree of every vertex in G is even.

Eg:- Seven Bridges of Knigsberg

Theorem

A connected graph G with at least one edge has an euler tour if and only if the degree of every vertex in G is even.

Eg:- Seven Bridges of Knigsberg

- An cycle that includes every vertex of a graph is called a Hamiltonian cycle.
- An Hamiltonian graph is a graph that has a Hamiltonian cycle.
- An cycle that includes every vertex of a graph is called a Hamiltonian cycle.
- An Hamiltonian graph is a graph that has a Hamiltonian cycle.

Eg:-

The Hamiltonian cycle is $H=\{u, z, y, x, w, t, v, u\}$

Outline

(1) Introduction to Graph Theory

- Isomorphic graphs
- Counting graphs
- Complement graph
- Line graph
- Euler tours
- Hamiltonian cycles
(2) Representing Graphs
- Matrix representation (Adjacency and Incidence)
- List representation

Adjacency matrix

A graph $G=(V, E)$ is often represented by its adjacency matrix. It is an $n \times n$ matrix A with $A(i, j)=1$ iff $(i, j) \in E$.

$$
A_{1}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] \quad A_{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Adjacency matrix

A graph $G=(V, E)$ is often represented by its adjacency matrix. It is an $n \times n$ matrix A with $A(i, j)=1$ iff $(i, j) \in E$. Examples:

$$
A_{1}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] \quad A_{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Adjacency matrix

A graph $G=(V, E)$ is often represented by its adjacency matrix. It is an $n \times n$ matrix A with $A(i, j)=1$ iff $(i, j) \in E$. Examples:

The adjacency matrices are

$$
A_{1}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] \quad A_{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Incidence matrix

A graph can also be represented by its $n \times m$ incidence matrix T. For an undirected graph $T(i, k)=T(j, k)=1$ iff $e_{k}=\left(v_{i}, v_{j}\right)$. For a directed graph $T(i, k)=-1, T(j, k)=1$ iff $e_{k}=\left(v_{i}, v_{j}\right)$.

$$
T_{1}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \quad T_{2}=\left[\begin{array}{rrrrr}
-1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & -1 \\
1 & 0 & 1 & -1 & 0 \\
0 & -1 & -1 & 0 & 0
\end{array}\right]
$$

Incidence matrix

A graph can also be represented by its $n \times m$ incidence matrix T. For an undirected graph $T(i, k)=T(j, k)=1$ iff $e_{k}=\left(v_{i}, v_{j}\right)$. For a directed graph $T(i, k)=-1, T(j, k)=1$ iff $e_{k}=\left(v_{i}, v_{j}\right)$. Examples:

$$
T_{1}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \quad T_{2}=\left[\begin{array}{rrrrr}
-1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & -1 \\
1 & 0 & 1 & -1 & 0 \\
0 & -1 & -1 & 0 & 0
\end{array}\right]
$$

Incidence matrix

A graph can also be represented by its $n \times m$ incidence matrix T. For an undirected graph $T(i, k)=T(j, k)=1$ iff $e_{k}=\left(v_{i}, v_{j}\right)$. For a directed graph $T(i, k)=-1, T(j, k)=1$ iff $e_{k}=\left(v_{i}, v_{j}\right)$. Examples:

The incidence matrices are

$$
T_{1}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \quad T_{2}=\left[\begin{array}{rrrrr}
-1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & -1 \\
1 & 0 & 1 & -1 & 0 \\
0 & -1 & -1 & 0 & 0
\end{array}\right]
$$

One can also use a sparse matrix representation of A and T. This is in fact nothing but a list of edges, organized by vertices.

$$
\begin{aligned}
& V(1)=\{2,3\} \\
& V(2)=\{3\} \\
& V(3)=\{4\} \\
& V(4)=\emptyset \\
& V(5)=\{1,3,4\}
\end{aligned}
$$

End!

