Graph Theory and Its Applications

Dr. G.H.J. Lanel

Lecture 4

Dr. G.H.J. Lanel (USJP)

Graph Theory and Its Applications

Lecture 4 1/14

Outline

Outline

Outline

Planar graphs

- Definitions
- Planar embedding
- Euler's formula
- Results of Euler's formula
- KuraTowski's Theorem
- Some properties of planar graphs

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definitions

Planar graphs

When drawing connected graphs one is naturally lead to the question of crossing edges. One says that a graph is planar if it can be drawn (or represented) without crossing.

The above graphs represent $K_{3,3}$ (not planar) and K_4 (planar).

Definition

Let G = (V, E) be a graph. A planar embedding of G is a picture of G in the plane such that the curves or line segments that represent edge intersect only at their end points. A graph that has plane embedding is called a planar graph.

Proposition

(Fary, 1948) Every planar graph can be represented in the plane using straight edges only.

・ロト ・ 同ト ・ ヨト ・ ヨ

Let G = (V, E) be a graph embedded in the plane. Let,

- v = number of vertices in *G*.
- e = number of edges in G.
- c = number of components in G.

r = number of regions determined by the embedding of G.

Example:

Dr. G.H.J. Lanel (USJP)

Theorem

Euler's Formula for every graph embedded in the plane is, v - e + r = c + 1

Example:

$$v = 11, e = 10, r = 3, c = 3 \Rightarrow 11 - 10 + 3 = 3 + 1.$$

Proof

Follows...

Corollary

For every connected graph embedded in the plane

v - e + r = 2.

Theorem

Let G be a simple planar graph with at least two edges. Then

 $e \leq 3v - 6$.

Example:

$$e=6, v=7 \Rightarrow 6 \leq 3 \cdot 7 - 6 = 15$$

Dr. G.H.J. Lanel (USJP)

Lemma

(Edge-region inequality) Let G be a simple graph. Then, $2e \ge 3r$.

Example:

 $e = 8, r = 4 \Rightarrow 16 = 2 \cdot 8 \ge 3 \cdot 4 = 12.$

Proof

Proof of the result $e \leq 3v - 6$.

Follows...

Dr. G.H.J. Lanel (USJP)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem

Let G be a planar graph with at least two edges, in which no cycle has length less than 4. Then,

$$e \leq 2v - 4$$
.

Example:

$e = 4, v = 4 \Rightarrow 4 \le 2 \cdot 4 - 4 = 4.$

Theorem

The complete graph K_5 is not planar, and complete bipartite graph $K_{3,3}$ is not planar.

Examples:

By using $e \le 3v - 6$ when, e = 10, $v = 5 \Rightarrow 10 \le 15 - 6 = 9$, a contradiction.

By using $e \le 2v - 4$ when, e = 9, $v = 6 \Rightarrow 9 \le 2 \cdot 6 - 4 = 8$, a contradiction.

Dr. G.H.J. Lanel (USJP)

Corollary

The average degree of the vertices of a planar connected graph G is smaller than $6 - \frac{12}{n}$.

Corollary In a planar (connected) graph there always exists a vertex v such that $d(v) \leq 5$.

Corollary A planar graph can be colored with 6 colors (see later).

Definition

The graph G' = (V', E') is said to be obtained from the graph G = (V, E) by an edge bisection if $V' = V \cup \{x\}, x \notin V$ and $E' = (E - \{uv\}) \cup \{ux, vx\}, uv \in E$. A graph obtained from *G* by a sequence of zero or more edge bisectors is called a subdivision of *G*.

Theorem

A graph is a non planar if and only if it contains a subdivision of K_5 and $K_{3,3}$ as subgraph.

Example:

The Peterson graph is non planar, since it contains a subdivision of $K_{3,3}$. Why?

Dr. G.H.J. Lanel (USJP)

▲ 王 → 오 < ○
Lecture 4 14/14