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Planar graphs Definitions

Planar graphs

When drawing connected graphs one is naturally lead to the question
of crossing edges. One says that a graph is planar if it can be drawn
(or represented) without crossing.

The above graphs represent K3,3 (not planar) and K4 (planar).
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Planar graphs Planar embedding

Definition
Let G = (V ,E) be a graph. A planar embedding of G is a picture of G
in the plane such that the curves or line segments that represent edge
intersect only at their end points. A graph that has plane embedding is
called a planar graph.

Proposition
(Fary, 1948) Every planar graph can be represented in the plane using
straight edges only.
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Planar graphs Euler’s formula

Let G = (V ,E) be a graph embedded in the plane. Let,

v = number of vertices in G.

e = number of edges in G.

c = number of components in G.

r = number of regions determined by the embedding of G.

Example:
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Planar graphs Euler’s formula

Theorem
Euler’s Formula for every graph embedded in the plane is,
v − e + r = c + 1

Example:

v = 11,e = 10, r = 3, c = 3⇒ 11− 10 + 3 = 3 + 1.

Proof
Follows...
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Planar graphs Results of Euler’s formula

Corollary
For every connected graph embedded in the plane

v − e + r = 2.

Theorem
Let G be a simple planar graph with at least two edges. Then

e ≤ 3v − 6.

Example:

e = 6, v = 7⇒ 6 ≤ 3 · 7− 6 = 15.
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Planar graphs Results of Euler’s formula

Lemma
(Edge-region inequality) Let G be a simple graph. Then, 2e ≥ 3r .

Example:

e = 8, r = 4⇒ 16 = 2 · 8 ≥ 3 · 4 = 12.

Proof
Proof of the result e ≤ 3v − 6.

Follows...
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Planar graphs Results of Euler’s formula

Theorem
Let G be a planar graph with at least two edges, in which no cycle has
length less than 4. Then,

e ≤ 2v − 4.

Example:

e = 4, v = 4⇒ 4 ≤ 2 · 4− 4 = 4.
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Planar graphs KuraTowski’s Theorem

Theorem
The complete graph K5 is not planar, and complete bipartite graph K3,3
is not planar.

Examples:

By using e ≤ 3v − 6 when, e = 10, v = 5⇒ 10 ≤ 15− 6 = 9, a
contradiction.

By using e ≤ 2v − 4 when, e = 9, v = 6⇒ 9 ≤ 2 · 6− 4 = 8, a
contradiction.
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Planar graphs Some properties of planar graphs

Corollary
The average degree of the vertices of a planar connected graph G is

smaller than 6− 12
n

.

Corollary
In a planar (connected) graph there always exists a vertex v such that
d(v) ≤ 5.

Corollary
A planar graph can be colored with 6 colors (see later).
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Planar graphs Some properties of planar graphs

Definition

The graph G
′
= (V

′
,E

′
) is said to be obtained from the graph

G = (V ,E) by an edge bisection if V
′
= V ∪ {x}, x 6∈ V and

E
′
= (E − {uv}) ∪ {ux , vx}, uv ∈ E . A graph obtained from G by a

sequence of zero or more edge bisectors is called a subdivision of G.

Theorem
A graph is a non planar if and only if it contains a subdivision of K5 and
K3,3 as subgraph.
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Planar graphs Some properties of planar graphs

Example:

The Peterson graph is non planar, since it contains a subdivision of
K3,3. Why?
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