MAT 122 2.0 Calculus

Dr. G.H.J. Lanel

Lecture 4

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

▲ ■ ▶ ■ のへの Lecture 4 1/15

イロト イヨト イヨト イヨト

Outline

Comparison Tests

- The Comparison Test 1
- Proof-Test 1
- The Comparison Test 2
- Proof-Test 2

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

Comparison Tests

- The Comparison Test 1
- Proof-Test 1
- The Comparison Test 2
- Proof-Test 2

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series with positive terms.

If $\sum_{n=1}^{\infty} b_n$ is convergent and $a_n \le b_n$, for all n, then $\sum_{n=1}^{\infty} a_n$ is also convergent.

If
$$\sum_{n=1}^{\infty} b_n$$
 is divergent and $a_n \ge b_n$, for all *n*, then $\sum_{n=1}^{\infty} a_n$ is also divergent.

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series with positive terms.

• If $\sum_{n=1}^{\infty} b_n$ is convergent and $a_n \le b_n$, for all *n*, then $\sum_{n=1}^{\infty} a_n$ is also convergent.

If
$$\sum_{n=1}^{\infty} b_n$$
 is divergent and $a_n \ge b_n$, for all n , then $\sum_{n=1}^{\infty} a_n$ is also divergent.

Dr. G.H.J. Lanel (USJP)

< ロ > < 同 > < 回 > < 回 >

Let
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ be series with positive terms.

• If
$$\sum_{n=1}^{\infty} b_n$$
 is convergent and $a_n \le b_n$, for all *n*, then $\sum_{n=1}^{\infty} a_n$ is also convergent.

2 If
$$\sum_{n=1}^{\infty} b_n$$
 is divergent and $a_n \ge b_n$, for all *n*, then $\sum_{n=1}^{\infty} a_n$ is also divergent.

イロト イロト イヨト イヨト

- The first part says that if we have a series whose terms are smaller than those of a known convergent series, then our series is also convergent.
- The second part says that if we start with a series whose terms are larger than those of a known divergent series, then it too is divergent.

イロト イポト イラト イラ

1.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+7)}$$
 is convergent.

Solution

Let
$$a_n = \frac{1}{n(n+7)}$$
 and $b_n = \frac{1}{n^2}$, then $\frac{1}{n(n+7)} \le \frac{1}{n^2}$, for all *n*.

Since $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent and $a_n \leq b_n$, for all n

 $\Rightarrow \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n(n+7)}$ is convergent.

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

1.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+7)}$$
 is convergent.

Solution

Let
$$a_n = \frac{1}{n(n+7)}$$
 and $b_n = \frac{1}{n^2}$, then $\frac{1}{n(n+7)} \le \frac{1}{n^2}$, for all *n*.

Since $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent and $a_n \le b_n$, for all n

 $\Rightarrow \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n(n+7)}$ is convergent.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+7)}$$
 is convergent.

Solution

Let
$$a_n = \frac{1}{n(n+7)}$$
 and $b_n = \frac{1}{n^2}$, then $\frac{1}{n(n+7)} \le \frac{1}{n^2}$, for all *n*.

Since $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent and $a_n \le b_n$, for all n

$$\Rightarrow \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n(n+7)}$$
 is convergent.

<ロ> <四> <四> <四> <四> <四</p>

1.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+7)}$$
 is convergent.

Solution

Let
$$a_n = \frac{1}{n(n+7)}$$
 and $b_n = \frac{1}{n^2}$, then $\frac{1}{n(n+7)} \le \frac{1}{n^2}$, for all *n*.

Since
$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 is convergent and $a_n \leq b_n$, for all n

$$\Rightarrow \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n(n+7)}$$
 is convergent.

イロト イヨト イヨト イヨト

1.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+7)}$$
 is convergent.

Solution

Let
$$a_n = \frac{1}{n(n+7)}$$
 and $b_n = \frac{1}{n^2}$, then $\frac{1}{n(n+7)} \le \frac{1}{n^2}$, for all *n*.

Since
$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 is convergent and $a_n \le b_n$, for all n

$$\Rightarrow \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n(n+7)}$$
 is convergent.

Dr. G.H.J. Lanel (USJP)

イロト イヨト イヨト イヨト

2. $\sum_{n=1}^{\infty} \frac{2n^2}{n^3+1}$ is divergent.

Solution

Let
$$a_n = \frac{2n^2}{n^3 + 1}$$
 and $b_n = \frac{1}{n}$, then $\frac{2n^2}{n^3 + 1} \ge \frac{1}{n}$, for all n .

Since $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent and $a_n \ge b_n$, for all n

 $\Rightarrow \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{2n^2}{n^3 + 1}$ is divergent.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 4 7 / 15

2.
$$\sum_{n=1}^{\infty} \frac{2n^2}{n^3+1}$$
 is divergent.

Solution

Let
$$a_n = \frac{2n^2}{n^3 + 1}$$
 and $b_n = \frac{1}{n}$, then $\frac{2n^2}{n^3 + 1} \ge \frac{1}{n}$, for all n .

Since $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent and $a_n \ge b_n$, for all n

 $\Rightarrow \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{2n^2}{n^3 + 1}$ is divergent.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 4 7 / 15

2.
$$\sum_{n=1}^{\infty} \frac{2n^2}{n^3+1}$$
 is divergent.

Solution

Let
$$a_n = \frac{2n^2}{n^3 + 1}$$
 and $b_n = \frac{1}{n}$, then $\frac{2n^2}{n^3 + 1} \ge \frac{1}{n}$, for all n .

Since $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent and $a_n \ge b_n$, for all n

 $\Rightarrow \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{2n^2}{n^3 + 1}$ is divergent.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 4 7 / 15

2.
$$\sum_{n=1}^{\infty} \frac{2n^2}{n^3+1}$$
 is divergent.

Solution

Let
$$a_n = \frac{2n^2}{n^3 + 1}$$
 and $b_n = \frac{1}{n}$, then $\frac{2n^2}{n^3 + 1} \ge \frac{1}{n}$, for all n .

Since
$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$$
 is divergent and $a_n \ge b_n$, for all n

 $\Rightarrow \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{2n^2}{n^3 + 1}$ is divergent.

Dr. G.H.J. Lanel (USJP)

<ロ> <四> <四> <四> <四> <四</p>

2.
$$\sum_{n=1}^{\infty} \frac{2n^2}{n^3+1}$$
 is divergent.

Solution

Let
$$a_n = \frac{2n^2}{n^3 + 1}$$
 and $b_n = \frac{1}{n}$, then $\frac{2n^2}{n^3 + 1} \ge \frac{1}{n}$, for all n .

Since
$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$$
 is divergent and $a_n \ge b_n$, for all n

$$\Rightarrow \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{2n^2}{n^3+1}$$
 is divergent.

イロト イヨト イヨト イヨト

Suppose
$$\sum_{n=1}^{\infty} b_n$$
 is convergent and $a_n \leq b_n$, for all n .

Let
$$S_n = \sum_{r=1}^n a_r$$
 and $T_n = \sum_{r=1}^n b_r$.

Then, $\lim_{n\to\infty} T_n = t$, for some $t \in \mathbb{R}$.

Since both series are have positive terms, $\{S_n\}_{n=1}^{\infty}$ and $\{T_n\}_{n=1}^{\infty}$ are increasing sequences.

Since $\lim_{n\to\infty} T_n = t$, $T_n \leq t$, for all n.

Dr. G.H.J. Lanel (USJP)

Suppose
$$\sum_{n=1}^{\infty} b_n$$
 is convergent and $a_n \leq b_n$, for all n .

Let
$$S_n = \sum_{r=1}^n a_r$$
 and $T_n = \sum_{r=1}^n b_r$.

Then, $\lim_{n\to\infty} T_n = t$, for some $t \in \mathbb{R}$.

Since both series are have positive terms, $\{S_n\}_{n=1}^{\infty}$ and $\{T_n\}_{n=1}^{\infty}$ are increasing sequences.

Since $\lim_{n\to\infty} T_n = t$, $T_n \leq t$, for all n.

< ロ > < 同 > < 回 > < 回 >

Suppose $\sum_{n=1}^{\infty} b_n$ is convergent and $a_n \leq b_n$, for all *n*.

Let
$$S_n = \sum_{r=1}^n a_r$$
 and $T_n = \sum_{r=1}^n b_r$.

Then,
$$\lim_{n\to\infty} T_n = t$$
, for some $t \in \mathbb{R}$.

Since both series are have positive terms, $\{S_n\}_{n=1}^{\infty}$ and $\{T_n\}_{n=1}^{\infty}$ are increasing sequences.

Since $\lim_{n\to\infty} T_n = t$, $T_n \leq t$, for all n.

Dr. G.H.J. Lanel (USJP)

< ロ > < 同 > < 回 > < 回 >

Suppose
$$\sum_{n=1}^{\infty} b_n$$
 is convergent and $a_n \leq b_n$, for all n .

Let
$$S_n = \sum_{r=1}^n a_r$$
 and $T_n = \sum_{r=1}^n b_r$.

Then,
$$\lim_{n\to\infty} T_n = t$$
, for some $t \in \mathbb{R}$.

Since both series are have positive terms, $\{S_n\}_{n=1}^{\infty}$ and $\{T_n\}_{n=1}^{\infty}$ are increasing sequences.

Since $\lim_{n\to\infty} T_n = t$, $T_n \leq t$, for all n.

Suppose
$$\sum_{n=1}^{\infty} b_n$$
 is convergent and $a_n \leq b_n$, for all n .

Let
$$S_n = \sum_{r=1}^n a_r$$
 and $T_n = \sum_{r=1}^n b_r$.

Then,
$$\lim_{n\to\infty} T_n = t$$
, for some $t \in \mathbb{R}$.

Since both series are have positive terms, $\{S_n\}_{n=1}^{\infty}$ and $\{T_n\}_{n=1}^{\infty}$ are increasing sequences.

Since $\lim_{n\to\infty} T_n = t$, $T_n \leq t$, for all *n*.

Dr. G.H.J. Lanel (USJP)

Proof Contd...

Since $a_r \leq b_r$, $S_n \leq t$, for all n.

i.e. $\{S_n\}_{n=1}^{\infty}$ is increasing and bounded above.

 $\lim_{n\to\infty} S_n$ exists.

Hence $\sum_{n=1}^{\infty} a_n$ is convergent.

イロト イポト イヨト イヨト 二日

Proof Contd...

Since $a_r \leq b_r$, $S_n \leq t$, for all n.

i.e. $\{S_n\}_{n=1}^{\infty}$ is increasing and bounded above.

```
\lim_{n\to\infty} S_n exists.
```

```
Hence \sum_{n=1}^{\infty} a_n is convergent.
```

Proof-Test 1

Proof Contd...

Since $a_r < b_r$, $S_n < t$, for all *n*.

i.e. $\{S_n\}_{n=1}^{\infty}$ is increasing and bounded above.

 $\lim_{n\to\infty} S_n$ exists.

Hence
$$\sum_{n=1}^{\infty} a_n$$
 is convergent.

Proof Contd...

Since $a_r \leq b_r$, $S_n \leq t$, for all n.

i.e. $\{S_n\}_{n=1}^{\infty}$ is increasing and bounded above.

 $\lim_{n\to\infty} S_n$ exists.

Hence $\sum_{n=1}^{\infty} a_n$ is convergent.

Now suppose $\sum_{n=1}^{\infty} b_n$ is divergent and $a_n \ge b_n$, for all n,

then
$$T_n = \sum_{r=1}^n b_r \longrightarrow \infty$$
 (Since $\{T_n\}_{n=1}^\infty$ is increasing).

But $a_r \ge b_r$ so $S_n \ge T_n > 0$.

Thus, $S_n \longrightarrow \infty$.

 $\therefore \sum_{n=1}^{\infty} a_n$ is diverges.

イロト イポト イヨト イヨト 二日

Now suppose $\sum_{n=1}^{\infty} b_n$ is divergent and $a_n \ge b_n$, for all n,

then
$$T_n = \sum_{r=1}^n b_r \longrightarrow \infty$$
 (Since $\{T_n\}_{n=1}^\infty$ is increasing).

But $a_r \ge b_r$ so $S_n \ge T_n > 0$.

Thus, $S_n \longrightarrow \infty$.

 $\therefore \sum_{n=1}^{\infty} a_n$ is diverges.

イロト イポト イヨト イヨト 二日

Now suppose $\sum_{n=1}^{\infty} b_n$ is divergent and $a_n \ge b_n$, for all n,

then
$$T_n = \sum_{r=1}^n b_r \longrightarrow \infty$$
 (Since $\{T_n\}_{n=1}^\infty$ is increasing).

But $a_r \ge b_r$ so $S_n \ge T_n > 0$.

Thus, $S_n \longrightarrow \infty$.

イロト 不得 トイヨト イヨト ヨー ろくの

Now suppose $\sum_{n=1}^{\infty} b_n$ is divergent and $a_n \ge b_n$, for all n,

then
$$T_n = \sum_{r=1}^n b_r \longrightarrow \infty$$
 (Since $\{T_n\}_{n=1}^\infty$ is increasing).

But $a_r \ge b_r$ so $S_n \ge T_n > 0$.

Thus, $S_n \longrightarrow \infty$.

Now suppose $\sum_{n=1}^{\infty} b_n$ is divergent and $a_n \ge b_n$, for all n,

then
$$T_n = \sum_{r=1}^n b_r \longrightarrow \infty$$
 (Since $\{T_n\}_{n=1}^\infty$ is increasing).

But $a_r \ge b_r$ so $S_n \ge T_n > 0$.

Thus, $S_n \longrightarrow \infty$.

$$\therefore \sum_{n=1}^{\infty} a_n$$
 is diverges.

▲□▶▲圖▶▲≣▶▲≣▶ = 三 ののの

Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms.

If $\lim_{n\to\infty} \frac{a_n}{b_n} = L$, where L > 0 is a finite number,

then either both series converge or both series diverge.

Dr. G.H.J. Lanel (USJP)

< ロ > < 同 > < 回 > < 回 >

Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms.

If
$$\lim_{n\to\infty} \frac{a_n}{b_n} = L$$
, where $L > 0$ is a finite number,

then either both series converge or both series diverge.

Dr. G.H.J. Lanel (USJP)

< ロ > < 同 > < 回 > < 回 >

Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms.

If
$$\lim_{n\to\infty} \frac{a_n}{b_n} = L$$
, where $L > 0$ is a finite number,

then either both series converge or both series diverge.

Dr. G.H.J. Lanel (USJP)

1. Test the series $\sum_{n=1}^{\infty} \frac{1}{3^n-1}$ for convergence or divergence.

Solution

Let
$$a_n = \frac{1}{3^n - 1}$$
 and $b_n = \frac{1}{3^n}$.

Then
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{3^n}{3^n - 1} = \lim_{n \to \infty} \frac{1}{1 - \frac{1}{3^n}} = 1 > 0$$

Since $\sum_{n=1}^{\infty} \frac{1}{3^n}$ is convergent geometric series, the given series converges by the The Limit Comparison Test.

1. Test the series $\sum_{n=1}^{\infty} \frac{1}{3^n-1}$ for convergence or divergence.

Solution

Let
$$a_n = \frac{1}{3^n - 1}$$
 and $b_n = \frac{1}{3^n}$.

Then
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{3^n}{3^n - 1} = \lim_{n \to \infty} \frac{1}{1 - \frac{1}{3^n}} = 1 > 0$$

Since $\sum_{n=1}^{\infty} \frac{1}{3^n}$ is convergent geometric series, the given series converges by the The Limit Comparison Test.

1. Test the series $\sum_{n=1}^{\infty} \frac{1}{3^n-1}$ for convergence or divergence.

Solution

Let
$$a_n = \frac{1}{3^n - 1}$$
 and $b_n = \frac{1}{3^n}$.

Then
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{3^n}{3^n - 1} = \lim_{n \to \infty} \frac{1}{1 - \frac{1}{3^n}} = 1 > 0$$

Since $\sum_{n=1}^{\infty} \frac{1}{3^n}$ is convergent geometric series, the given series converges by the The Limit Comparison Test.

1. Test the series $\sum_{n=1}^{\infty} \frac{1}{3^n-1}$ for convergence or divergence.

Solution

Let
$$a_n = \frac{1}{3^n - 1}$$
 and $b_n = \frac{1}{3^n}$.

Then
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{3^n}{3^n - 1} = \lim_{n \to \infty} \frac{1}{1 - \frac{1}{3^n}} = 1 > 0$$

Since $\sum_{n=1}^{\infty} \frac{1}{3^n}$ is convergent geometric series, the given series converges by the The Limit Comparison Test.

1. Test the series $\sum_{n=1}^{\infty} \frac{1}{3^{n-1}}$ for convergence or divergence.

Solution

Let
$$a_n = \frac{1}{3^n - 1}$$
 and $b_n = \frac{1}{3^n}$.

Then
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{3^n}{3^n - 1} = \lim_{n \to \infty} \frac{1}{1 - \frac{1}{3^n}} = 1 > 0$$

Since $\sum_{n=1}^{\infty} \frac{1}{3^n}$ is convergent geometric series, the given series converges by the The Limit Comparison Test.

2. Determine whether the series $\sum_{n=1}^{\infty} \frac{3n^2+2n}{n^3+1}$ converges or diverges.

Solution

Let
$$a_n = \frac{3n^2 + 2n}{n^3 + 1} = \frac{n^2(3 + \frac{2}{n})}{n^3(1 + \frac{1}{n^3})}$$
. Then $\frac{a_n}{\frac{1}{n}} = \frac{(3 + \frac{2}{n})}{(1 + \frac{1}{n^3})}$. Thus, $b_n = \frac{1}{n}$.

Then
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(3 + \frac{2}{n})}{(1 + \frac{1}{n^3})} = 3 > 0.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, the given series is divergent by the The Limit Comparison Test.

2. Determine whether the series $\sum_{n=1}^{\infty} \frac{3n^2+2n}{n^3+1}$ converges or diverges.

Solution

Let
$$a_n = \frac{3n^2 + 2n}{n^3 + 1} = \frac{n^2(3 + \frac{2}{n})}{n^3(1 + \frac{1}{n^3})}$$
. Then $\frac{a_n}{\frac{1}{n}} = \frac{(3 + \frac{2}{n})}{(1 + \frac{1}{n^3})}$. Thus, $b_n = \frac{1}{n}$.

Then
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(3 + \frac{2}{n})}{(1 + \frac{1}{n^3})} = 3 > 0.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, the given series is divergent by the The Limit Comparison Test.

2. Determine whether the series $\sum_{n=1}^{\infty} \frac{3n^2+2n}{n^3+1}$ converges or diverges.

Solution

Let
$$a_n = \frac{3n^2 + 2n}{n^3 + 1} = \frac{n^2(3 + \frac{2}{n})}{n^3(1 + \frac{1}{n^3})}$$
. Then $\frac{a_n}{\frac{1}{n}} = \frac{(3 + \frac{2}{n})}{(1 + \frac{1}{n^3})}$. Thus, $b_n = \frac{1}{n^3}$.
Then $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(3 + \frac{2}{n})}{(1 + \frac{1}{n^3})} = 3 > 0$.

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, the given series is divergent by the The Limit Comparison Test.

2. Determine whether the series $\sum_{n=1}^{\infty} \frac{3n^2+2n}{n^3+1}$ converges or diverges.

Solution

Let
$$a_n = \frac{3n^2 + 2n}{n^3 + 1} = \frac{n^2(3 + \frac{2}{n})}{n^3(1 + \frac{1}{n^3})}$$
. Then $\frac{a_n}{\frac{1}{n}} = \frac{(3 + \frac{2}{n})}{(1 + \frac{1}{n^3})}$. Thus, $b_n = \frac{1}{n}$.

Then
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{(3+\frac{2}{n})}{(1+\frac{1}{n^3})} = 3 > 0.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, the given series is divergent by the The Limit Comparison Test.

2. Determine whether the series $\sum_{n=1}^{\infty} \frac{3n^2+2n}{n^3+1}$ converges or diverges.

Solution

Let
$$a_n = \frac{3n^2 + 2n}{n^3 + 1} = \frac{n^2(3 + \frac{2}{n})}{n^3(1 + \frac{1}{n^3})}$$
. Then $\frac{a_n}{\frac{1}{n}} = \frac{(3 + \frac{2}{n})}{(1 + \frac{1}{n^3})}$. Thus, $b_n = \frac{1}{n}$.

Then
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(3+\frac{2}{n})}{(1+\frac{1}{n^3})} = 3 > 0.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, the given series is divergent by the The Limit Comparison Test.

Suppose
$$\lim_{n\to\infty} \frac{a_n}{b_n} = L$$
, where $L > 0$ is a finite number.

Since $\lim_{n\to\infty} \frac{a_n}{b_n} = L$, $m \le \frac{a_n}{b_n} \le M$, for all $n > n_0$, for some positive numbers *m* and *M*

 \therefore $mb_n \leq a_n \leq Mb_n$, for all $n > n_0$.

(日)

Suppose $\lim_{n\to\infty} \frac{a_n}{b_n} = L$, where L > 0 is a finite number.

Since $\lim_{n\to\infty} \frac{a_n}{b_n} = L$, $m \le \frac{a_n}{b_n} \le M$, for all $n > n_0$, for some positive numbers *m* and *M*

 \therefore $mb_n \leq a_n \leq Mb_n$, for all $n > n_0$.

Suppose
$$\lim_{n\to\infty} \frac{a_n}{b_n} = L$$
, where $L > 0$ is a finite number.

Since
$$\lim_{n\to\infty} \frac{a_n}{b_n} = L$$
, $m \le \frac{a_n}{b_n} \le M$, for all $n > n_0$, for some positive numbers *m* and *M*

 \therefore $mb_n \leq a_n \leq Mb_n$, for all $n > n_0$.

(4日)

Suppose
$$\lim_{n\to\infty} \frac{a_n}{b_n} = L$$
, where $L > 0$ is a finite number.

Since
$$\lim_{n\to\infty} \frac{a_n}{b_n} = L$$
, $m \le \frac{a_n}{b_n} \le M$, for all $n > n_0$, for some positive numbers *m* and *M*

 \therefore $mb_n \le a_n \le Mb_n$, for all $n > n_0$.

イロト イヨト イヨト イヨト

Proof-Test 2

Proof Contd..

If $\sum_{n=1}^{\infty} b_n$ converges, so does $\sum_{n=1}^{\infty} Mb_n$. Thus $\sum_{n=1}^{\infty} a_n$ converges by the Comparison Test 1-Part (1).

If $\sum_{n=1}^{\infty} b_n$ diverges, so does $\sum_{n=1}^{\infty} mb_n$ and by the Comparison Test 1-Part (2). shows that $\sum_{n=1}^{\infty} a_n$ diverges.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 4 15 / 15

イロト イ押ト イヨト イヨト

Proof-Test 2

Proof Contd..

If $\sum_{n=1}^{\infty} b_n$ converges, so does $\sum_{n=1}^{\infty} Mb_n$. Thus $\sum_{n=1}^{\infty} a_n$ converges by the Comparison Test 1-Part (1).

If
$$\sum_{n=1}^{\infty} b_n$$
 diverges, so does $\sum_{n=1}^{\infty} mb_n$ and by the Comparison Test 1-Part (2). shows that $\sum_{n=1}^{\infty} a_n$ diverges.