# MAT 122 2.0 Calculus 

Dr. G.H.J. Lanel

Lecture 5

## Outline

(1) Alternating Series

- Alternating Series
- The Alternating Series Test
- Absolute Convergence
- Conditionally Convergence
(2) Ratio and Root Tests
- Ratio Tests
- Root Tests


## Outline

(1) Alternating Series

- Alternating Series
- The Alternating Series Test
- Absolute Convergence
- Conditionally Convergence
(2) Ratio and Root Tests
- Ratio Tests
- Root Tests


## Consider the series whose terms are not necessarily positive.

$\square$

Consider the series whose terms are not necessarily positive.

- An Alternating Series is a series whose terms are alternately positive and negative.

Consider the series whose terms are not necessarily positive.

- An Alternating Series is a series whose terms are alternately positive and negative.


## Examples:

Consider the series whose terms are not necessarily positive.

- An Alternating Series is a series whose terms are alternately positive and negative.

Examples:

$$
\begin{aligned}
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots & =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \\
-\frac{1}{2}+\frac{2}{3}-\frac{3}{4}+\frac{4}{5}-\frac{5}{6}+\cdots & =\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+1}
\end{aligned}
$$

## If the alternating series of the form

## If the alternating series of the form

If the alternating series of the form

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\cdots, b_{n}>0
$$

If the alternating series of the form

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\cdots, b_{n}>0
$$

with,
(1) $b_{n+1} \leq b_{n}$, for all $n$


If the alternating series of the form

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\cdots, b_{n}>0
$$

with,
(1) $b_{n+1} \leq b_{n}$, for all $n$
(2) $\lim _{n \rightarrow \infty} b_{n}=0$, (the limit of the $n^{\text {th }}$ term of the series is 0 ).

If the alternating series of the form

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\cdots, b_{n}>0
$$

with,
(1) $b_{n+1} \leq b_{n}$, for all $n$
(2) $\lim _{n \rightarrow \infty} b_{n}=0$, (the limit of the $n^{\text {th }}$ term of the series is 0 ).
then the series is convergent.

## Example 1

## The alternating harmonic series.



## Example 1:

## The alternating harmonic series,



## which satisfies,

## Example 1:

The alternating harmonic series,

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}
$$

## Example 1:

The alternating harmonic series,

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}
$$

which satisfies,

## Example 1:

The alternating harmonic series,

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}
$$

which satisfies,
(1) $\frac{1}{n+1}<\frac{1}{n} \Rightarrow b_{n+1}<b_{n}$ and

So the series is convergent by the Alternating Series Test.

## Example 1:

The alternating harmonic series,

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}
$$

which satisfies,
(1) $\frac{1}{n+1}<\frac{1}{n} \Rightarrow b_{n+1}<b_{n}$ and
(2) $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$

## Example 1:

The alternating harmonic series,

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}
$$

which satisfies,
(1) $\frac{1}{n+1}<\frac{1}{n} \Rightarrow b_{n+1}<b_{n}$ and
(2) $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$

So the series is convergent by the Alternating Series Test.

## Example 2:

## The series



## Example 2:

The series $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot 3 n}{4 n-1}$ is alternating.

## But

So the condition (2) is not satisfied, the limit of the $n$th term is not 0 .

## Example 2:

The series $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot 3 n}{4 n-1}$ is alternating.
But $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{3 n}{4 n-1}=\lim _{n \rightarrow \infty} \frac{3}{4-\frac{1}{n}}=\frac{3}{4}$

## Example 2:

The series $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot 3 n}{4 n-1}$ is alternating.
But $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{3 n}{4 n-1}=\lim _{n \rightarrow \infty} \frac{3}{4-\frac{1}{n}}=\frac{3}{4}$
So the condition (2) is not satisfied, the limit of the $n$th term is not 0 .

## Example 2:

The series $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot 3 n}{4 n-1}$ is alternating.
But $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{3 n}{4 n-1}=\lim _{n \rightarrow \infty} \frac{3}{4-\frac{1}{n}}=\frac{3}{4}$
So the condition (2) is not satisfied, the limit of the $n$th term is not 0 .

So the series diverges.

## Example 3:

## Test the series $\sum(-1)^{n+1} \frac{n^{2}}{n^{3}+1}$ for convergence or divergence.

## Example 3:

Test the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+1}$ for convergence or divergence.

## We construct the following



## We construct the following



$$
s_{2}=b_{1}-b_{2} \geq 0, \text { since } b_{2} \leq b_{1}
$$

## We construct the following



$$
s_{2}=b_{1}-b_{2} \geq 0, \text { since } b_{2} \leq b_{1}
$$

$$
s_{4}=s_{2}+\left(b_{3}-b_{4}\right) \geq s_{2}, \text { since } b_{4} \leq b_{3}
$$

## We construct the following



$$
s_{2}=b_{1}-b_{2} \geq 0, \text { since } b_{2} \leq b_{1}
$$

$$
s_{4}=s_{2}+\left(b_{3}-b_{4}\right) \geq s_{2}, \text { since } b_{4} \leq b_{3}
$$

$$
s_{2 n}=s_{2 n-2}+\left(b_{2 n-1}-b_{2 n}\right) \geq s_{2 n-2}, \text { since } b_{2 n} \leq b_{2 n-1}, \text { for all } n
$$

## Proof Contd.

## Thus $0 \leq S_{2} \leq S_{4}$

 and we can also write,
## Proof Contd.

Thus $0 \leq S_{2} \leq S_{4} \leq S_{6} \leq \cdots \leq S_{2 n} \leq \cdots$

## Proof Contd.

Thus $0 \leq S_{2} \leq S_{4} \leq S_{6} \leq \cdots \leq S_{2 n} \leq \cdots$ and we can also write, Every term in brackets is positive, so $S_{2 n} \leq b_{1}$, for all $n$.

## Proof Contd.

Thus $0 \leq S_{2} \leq S_{4} \leq S_{6} \leq \cdots \leq S_{2 n} \leq \cdots$
and we can also write,
$S_{2 n}=b_{1}-\left(b_{2}-b_{3}\right)-\left(b_{4}-b_{5}\right)-\cdots-\left(b_{2 n-2}-b_{2 n-1}\right)-b_{2 n}$
Every term in brackets is positive, so $S_{2 n} \leq b_{1}$, for all $n$.

Therefore, the sequence $\left\{S_{2 n}\right\}$ of even partial sums is increasing and bounded above.

## Proof Contd.

Thus $0 \leq S_{2} \leq S_{4} \leq S_{6} \leq \cdots \leq S_{2 n} \leq \cdots$
and we can also write,
$S_{2 n}=b_{1}-\left(b_{2}-b_{3}\right)-\left(b_{4}-b_{5}\right)-\cdots-\left(b_{2 n-2}-b_{2 n-1}\right)-b_{2 n}$
Every term in brackets is positive, so $S_{2 n} \leq b_{1}$, for all $n$.
$\lim _{n \rightarrow \infty} S_{2 n}=S$, so the series is convergent.

## Proof Contd.

Thus $0 \leq S_{2} \leq S_{4} \leq S_{6} \leq \cdots \leq S_{2 n} \leq \cdots$
and we can also write,
$S_{2 n}=b_{1}-\left(b_{2}-b_{3}\right)-\left(b_{4}-b_{5}\right)-\cdots-\left(b_{2 n-2}-b_{2 n-1}\right)-b_{2 n}$
Every term in brackets is positive, so $S_{2 n} \leq b_{1}$, for all $n$.

Therefore, the sequence $\left\{S_{2 n}\right\}$ of even partial sums is increasing and bounded above.
$\lim _{n \rightarrow \infty} S_{2 n}=S$, so the series is convergent.

## Proof Contd.

Thus $0 \leq S_{2} \leq S_{4} \leq S_{6} \leq \cdots \leq S_{2 n} \leq \cdots$
and we can also write,
$S_{2 n}=b_{1}-\left(b_{2}-b_{3}\right)-\left(b_{4}-b_{5}\right)-\cdots-\left(b_{2 n-2}-b_{2 n-1}\right)-b_{2 n}$
Every term in brackets is positive, so $S_{2 n} \leq b_{1}$, for all $n$.

Therefore, the sequence $\left\{S_{2 n}\right\}$ of even partial sums is increasing and bounded above.
$\therefore \lim _{n \rightarrow \infty} S_{2 n}=S$, so the series is convergent.

Given any series $\sum a_{n}$, we can consider the corresponding series

Given any series $\sum a_{n}$, we can consider the corresponding series

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|=\left|a_{1}\right|+\left|a_{2}\right|+\left|a_{3}\right|+\cdots
$$

## whose terms are the absolute values of the terms of the original series.

Given any series $\sum a_{n}$, we can consider the corresponding series

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|=\left|a_{1}\right|+\left|a_{2}\right|+\left|a_{3}\right|+\cdots
$$

whose terms are the absolute values of the terms of the original series.

Given any series $\sum a_{n}$, we can consider the corresponding series

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|=\left|a_{1}\right|+\left|a_{2}\right|+\left|a_{3}\right|+\cdots
$$

whose terms are the absolute values of the terms of the original series.

Definition
A series $\sum a_{n}$ is called absolutely convergent if the series of absolute values $\sum\left|a_{n}\right|$ is convergent.

Given any series $\sum a_{n}$, we can consider the corresponding series

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|=\left|a_{1}\right|+\left|a_{2}\right|+\left|a_{3}\right|+\cdots
$$

whose terms are the absolute values of the terms of the original series.

Definition
A series $\sum a_{n}$ is called absolutely convergent if the series of absolute values $\sum\left|a_{n}\right|$ is convergent.

Notice that if $\sum a_{n}$ is a series with positive terms, then $\left|a_{n}\right|=a_{n}$ and so absolute convergence is the same as convergence in this case.

## Theorem

If a series $\sum a_{n}$ is absolutely convergent, then it is convergent.

## Theorem

If a series $\sum a_{n}$ is absolutely convergent, then it is convergent.

## Proof :

Consider the the inequality,
is convergent


## Theorem

If a series $\sum a_{n}$ is absolutely convergent, then it is convergent.

## Proof :

Consider the the inequality,

$$
0 \leq a_{n}+\left|a_{n}\right| \leq 2\left|a_{n}\right|
$$

## Theorem

If a series $\sum a_{n}$ is absolutely convergent, then it is convergent.

## Proof :

Consider the the inequality,

$$
0 \leq a_{n}+\left|a_{n}\right| \leq 2\left|a_{n}\right|
$$

if $\sum a_{n}$ is absolutely convergent, then $\sum\left|a_{n}\right|$ is convergent, so $\sum 2\left|a_{n}\right|$ is convergent.

Therefore, by the Comparison Test, $\sum\left(a_{n}+\left|a_{n}\right|\right)$ is convergent.
Then

$$
\sum a_{n}=\sum\left(a_{n}+\left|a_{n}\right|\right)-\sum\left|a_{n}\right|
$$

## Example 1.

The series,


## is absolutely convergent because,



## is a convergent $p$-series $(p=2)$.

## Example 1.

The series,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots
$$

is absolutely convergent because,

[^0]
## Example 1.

The series,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots
$$

is absolutely convergent because,

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{n^{2}}\right| & =\sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
& =1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots
\end{aligned}
$$

is a convergent p -series $(p=2)$.

## Example 2.

## This alternating harmonic series,



## But it is not absolutely convergent, because the corresponding series of absolute value is,

## Example 2.

This alternating harmonic series,

## But it is not absolutely convergent, because the corresponding series

 of absolute value is,

## Example 2.

This alternating harmonic series,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots \quad \text { is convergent. }
$$

But it is not absolutely convergent, because the corresponding series of absolute value is,


## Example 2.

This alternating harmonic series,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots \quad \text { is convergent. }
$$

But it is not absolutely convergent, because the corresponding series of absolute value is,

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{n}\right| & =\sum_{n=1}^{\infty} \frac{1}{n} \\
& =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
\end{aligned}
$$

which is the harmonic series and is therefore divergent.

## Definition

A series $\sum a_{n}$ is said to converge conditionally if $\sum a_{n}$ is converges while $\sum\left|a_{n}\right|$ diverges (Not coverage absolutely).

## Definition

A series $\sum a_{n}$ is said to converge conditionally if $\sum a_{n}$ is converges while $\sum\left|a_{n}\right|$ diverges (Not coverage absolutely).

Eg. 01.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\cdots \quad \text { is converge conditionally. }
$$

## Definition

A series $\sum a_{n}$ is said to converge conditionally if $\sum a_{n}$ is converges while $\sum\left|a_{n}\right|$ diverges (Not coverage absolutely).

Eg. 01.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\cdots \quad \text { is converge conditionally. }
$$

Eg. 02.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots \quad \text { is converge conditionally. }
$$

## Outline

(1) Alternating Series

- Alternating Series
- The Alternating Series Test
- Absolute Convergence
- Conditionally Convergence
(2) Ratio and Root Tests
- Ratio Tests
- Root Tests


## The Ratio Test is effective with factorials and with combinations of powers and factorials.

The Ratio Test is effective with factorials and with combinations of powers and factorials.

The Ratio Test is effective with factorials and with combinations of powers and factorials.

## The Ratio Test

convergent and therefore it is convergent.

The Ratio Test is effective with factorials and with combinations of powers and factorials.

## The Ratio Test

(1) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent and therefore it is convergent.

The Ratio Test is effective with factorials and with combinations of powers and factorials.

## The Ratio Test

(1) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent and therefore it is convergent.
(2) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$ then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

The Ratio Test is effective with factorials and with combinations of powers and factorials.

## The Ratio Test

(1) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent and therefore it is convergent.
(2) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$ then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(3) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum_{n=1}^{\infty} a_{n}$.

Eg. 01: Test the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{3^{n}}$ for absolute convergence. Solution: Using The Ratio Test with $a_{n}=(-1)^{n} \frac{n^{3}}{3^{n}}$

Eg. 01: Test the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{3^{n}}$ for absolute convergence.
Solution: Using The Ratio Test with $a_{n}=(-1)^{n} \frac{n^{3}}{3^{n}}$

Eg. 01: Test the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{3^{n}}$ for absolute convergence.
Solution: Using The Ratio Test with $a_{n}=(-1)^{n} \frac{n^{3}}{3^{n}}$

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\left|\frac{\frac{(-1)^{n+1}(n+1)^{3}}{3^{n+1}}}{\frac{(-1)^{n} n^{3}}{3^{n}}}\right| \\
& =\frac{(n+1)^{3}}{3^{n+1}} \cdot \frac{3^{n}}{n^{3}} \\
& =\frac{1}{3}\left(\frac{n+1}{n}\right)^{3} \\
& =\frac{1}{3}\left(1+\frac{1}{n}\right)^{3} \rightarrow \frac{1}{3}<1 \text { as } n \rightarrow \infty
\end{aligned}
$$

Eg. 01: Test the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{3^{n}}$ for absolute convergence.
Solution: Using The Ratio Test with $a_{n}=(-1)^{n} \frac{n^{3}}{3^{n}}$

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\left|\frac{\frac{(-1)^{n+1}(n+1)^{3}}{3^{n+1}}}{\frac{(-1)^{n} n^{3}}{3^{n}}}\right| \\
& =\frac{(n+1)^{3}}{3^{n+1}} \cdot \frac{3^{n}}{n^{3}} \\
& =\frac{1}{3}\left(\frac{n+1}{n}\right)^{3} \\
& =\frac{1}{3}\left(1+\frac{1}{n}\right)^{3} \rightarrow \frac{1}{3}<1 \text { as } n \rightarrow \infty
\end{aligned}
$$

Thus, by the Ratio Test, the given series is absolutely convergent and therefore convergent.

## Eg. 02: Test the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$.

## Solution: Since the terms $a_{n}=\frac{\square}{n}$ are positive, we don't need the

 absolute value signs.Eg. 02: Test the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$. Solution: Since the terms $a_{n}=\frac{n^{n}}{n!}$ are positive, we don't need the absolute value signs.

Since $e>1$, the given series is divergent by the Ratio Test.

Eg. 02: Test the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$.
Solution: Since the terms $a_{n}=\frac{n^{n}}{n!}$ are positive, we don't need the absolute value signs.

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^{n}} & =\frac{(n+1)(n+1)^{n}}{(n+1)!} \cdot \frac{n!}{n^{n}} \\
& =\left(\frac{n+1}{n}\right)^{n} \\
& =\left(1+\frac{1}{n}\right)^{n} \rightarrow \text { e as } n \rightarrow \infty
\end{aligned}
$$

Eg. 02: Test the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$.
Solution: Since the terms $a_{n}=\frac{n^{n}}{n!}$ are positive, we don't need the absolute value signs.

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^{n}} & =\frac{(n+1)(n+1)^{n}}{(n+1)!} \cdot \frac{n!}{n^{n}} \\
& =\left(\frac{n+1}{n}\right)^{n} \\
& =\left(1+\frac{1}{n}\right)^{n} \rightarrow e \text { as } n \rightarrow \infty
\end{aligned}
$$

Since $e>1$, the given series is divergent by the Ratio Test.

## Proof of the Test:

Part (1): The idea is to compare the given series with a convergent geometric series. Since $L<1$, we choose a number $r$ such that $L<r<1$. Since

## Proof of the Test:

Part (1): The idea is to compare the given series with a convergent geometric series. Since $L<1$, we choose a number $r$ such that $L<r<1$. Since

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L,
$$

## Proof of the Test:

Part (1): The idea is to compare the given series with a convergent geometric series. Since $L<1$, we choose a number $r$ such that $L<r<1$. Since

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

the ratio $\left|\frac{a_{n+1}}{a_{n}}\right|$ will eventually be less than $r$ that is, there exists an integer $N$ such that

## Proof of the Test:

Part (1): The idea is to compare the given series with a convergent geometric series. Since $L<1$, we choose a number $r$ such that $L<r<1$. Since

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

the ratio $\left|\frac{a_{n+1}}{a_{n}}\right|$ will eventually be less than $r$ that is, there exists an integer $N$ such that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|<r, \text { whenever } n \geq N
$$

## Proof of the Test:

Part (1): The idea is to compare the given series with a convergent geometric series. Since $L<1$, we choose a number $r$ such that $L<r<1$. Since

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

the ratio $\left|\frac{a_{n+1}}{a_{n}}\right|$ will eventually be less than $r$ that is, there exists an integer $N$ such that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|<r, \text { whenever } n \geq N
$$

or equivalently,

$$
\left|a_{n+1}\right|<\left|a_{n}\right| r, \text { whenever } n \geq N \rightarrow(1)
$$

## Proof Contd.

## Putting $n$ successively equal to $N, N+1, N+2, \leftarrow$ in (1), we can obtain

## $\left|a_{N+1}\right|<\left|a_{N}\right| r$



## Proof Contd.

Putting $n$ successively equal to $N, N+1, N+2, \leftarrow$ in (1), we can obtain
and, in general

## Proof Contd.

Putting $n$ successively equal to $N, N+1, N+2, \leftarrow$ in (1), we can obtain

$$
\begin{aligned}
& \left|a_{N+1}\right|<\left|a_{N}\right| r \\
& \left|a_{N+2}\right|<\left|a_{N+1}\right| r<\left|a_{N}\right| r^{2} \\
& \left|a_{N+3}\right|<\left|a_{N+2}\right| r<\left|a_{N}\right| r^{3}
\end{aligned}
$$

## Proof Contd.

Putting $n$ successively equal to $N, N+1, N+2, \leftarrow$ in (1), we can obtain

$$
\begin{aligned}
& \left|a_{N+1}\right|<\left|a_{N}\right| r \\
& \left|a_{N+2}\right|<\left|a_{N+1}\right| r<\left|a_{N}\right| r^{2} \\
& \left|a_{N+3}\right|<\left|a_{N+2}\right| r<\left|a_{N}\right| r^{3}
\end{aligned}
$$

and, in general

$$
\left|a_{N+k}\right|<\left|a_{N}\right| r^{k}, \text { for all } k \geq 1 \rightarrow(2)
$$

## Proof Contd.

## Now the series


> is convergent because it is a geometric series with $0<r<1$. So the inequality (2) together with the Comparison Test, show that the series

## Proof Contd.

## Now the series

$$
\sum_{k=1}^{\infty}\left|a_{N}\right| r^{k}=\left|a_{N}\right| r+\left|a_{N}\right| r^{2}+\left|a_{N}\right| r^{3}+\cdots
$$

## is convergent because it is a geometric series with $0<r<1$. So the

 ineauality (2) toaether with the Comparison Test. show that the series
## Proof Contd.

Now the series

$$
\sum_{k=1}^{\infty}\left|a_{N}\right| r^{k}=\left|a_{N}\right| r+\left|a_{N}\right| r^{2}+\left|a_{N}\right| r^{3}+\cdots
$$

is convergent because it is a geometric series with $0<r<1$. So the inequality (2) together with the Comparison Test, show that the series

## Proof Contd.

Now the series

$$
\sum_{k=1}^{\infty}\left|a_{N}\right| r^{k}=\left|a_{N}\right| r+\left|a_{N}\right| r^{2}+\left|a_{N}\right| r^{3}+\cdots
$$

is convergent because it is a geometric series with $0<r<1$. So the inequality (2) together with the Comparison Test, show that the series

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\right|=\sum_{k=1}^{\infty}\left|a_{N+k}\right|=\left|a_{N+1}\right|+\left|a_{N+2}\right|+\left|a_{N+3}\right|+\cdots
$$

## Proof Contd.

Now the series

$$
\sum_{k=1}^{\infty}\left|a_{N}\right| r^{k}=\left|a_{N}\right| r+\left|a_{N}\right| r^{2}+\left|a_{N}\right| r^{3}+\cdots
$$

is convergent because it is a geometric series with $0<r<1$. So the inequality (2) together with the Comparison Test, show that the series

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\right|=\sum_{k=1}^{\infty}\left|a_{N+k}\right|=\left|a_{N+1}\right|+\left|a_{N+2}\right|+\left|a_{N+3}\right|+\cdots
$$

is also convergent. It follows that the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent. ( Recall that a finite number of terms doesn't affect convergence.) Therefore $\sum a_{n}$ is absolutely convergent.

## Proof Contd.

## Part (2): If

$$
\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow L>1 \text { or }\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow \infty \text {, then the ratio }\left|\frac{a_{n+1}}{a_{n}}\right|
$$

## Proof Contd.

Part (2): If

$$
\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow L>1 \text { or }\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow \infty \text {, then the ratio }\left|\frac{a_{n+1}}{a_{n}}\right|
$$

will eventually be greater than 1 ; that is, there exists an integer $N$ such that

## Proof Contd.

Part (2): If

$$
\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow L>1 \text { or }\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow \infty \text {, then the ratio }\left|\frac{a_{n+1}}{a_{n}}\right|
$$

will eventually be greater than 1 ; that is, there exists an integer $N$ such that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|>1, \text { whenever } n \geq N
$$

$\square$

## Proof Contd.

Part (2): If

$$
\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow L>1 \text { or }\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow \infty \text {, then the ratio }\left|\frac{a_{n+1}}{a_{n}}\right|
$$

will eventually be greater than 1 ; that is, there exists an integer $N$ such that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|>1, \text { whenever } n \geq N
$$

This means that $\left|a_{n+1}\right|>\left|a_{n}\right|$, whenever $n \geq N$ and so

$$
\lim _{n \rightarrow \infty} a_{n} \neq 0
$$

## Proof Contd.

Part (2): If

$$
\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow L>1 \text { or }\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow \infty, \text { then the ratio }\left|\frac{a_{n+1}}{a_{n}}\right|
$$

will eventually be greater than 1 ; that is, there exists an integer $N$ such that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|>1, \text { whenever } n \geq N
$$

This means that $\left|a_{n+1}\right|>\left|a_{n}\right|$, whenever $n \geq N$ and so

$$
\lim _{n \rightarrow \infty} a_{n} \neq 0
$$

Therefore, $\sum a_{n}$ diverges by the Test for Divergence.
 instance, for the convergent series $\sum \frac{1}{n^{2}}$ we have
 instance, for the convergent series $\sum \frac{1}{n^{2}}$ we have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{1}{(n+1)^{2}}}{\frac{1}{n^{2}}}=\frac{n^{2}}{(n+1)^{2}}=\frac{1}{\left(1+\frac{1}{n}\right)^{2}} \rightarrow 1 \text { as } n \rightarrow \infty
$$

 instance, for the convergent series $\sum \frac{1}{n^{2}}$ we have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{1}{(n+1)^{2}}}{\frac{1}{n^{2}}}=\frac{n^{2}}{(n+1)^{2}}=\frac{1}{\left(1+\frac{1}{n}\right)^{2}} \rightarrow 1 \text { as } n \rightarrow \infty
$$

whereas for the divergent series $\sum \frac{1}{n}$ we have

Part (3): If $\lim _{n \rightarrow \infty} \frac{\frac{a}{n+1}^{a_{n}}}{a_{n}}$, the test gives no information. For instance, for the convergent series $\sum \frac{1}{n^{2}}$ we have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{1}{(n+1)^{2}}}{\frac{1}{n^{2}}}=\frac{n^{2}}{(n+1)^{2}}=\frac{1}{\left(1+\frac{1}{n}\right)^{2}} \rightarrow 1 \text { as } n \rightarrow \infty
$$

whereas for the divergent series $\sum \frac{1}{n}$ we have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{1}{n+1}}{\frac{1}{n}}=\frac{n}{n+1}=\frac{1}{1+\frac{1}{n}} \rightarrow 1 \text { as } n \rightarrow \infty
$$

Part (3): If $\lim _{n \rightarrow \infty} \frac{\frac{a}{n+1}^{a_{n}}}{a_{n}} 1$, the test gives no information. For instance, for the convergent series $\sum \frac{1}{n^{2}}$ we have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{1}{(n+1)^{2}}}{\frac{1}{n^{2}}}=\frac{n^{2}}{(n+1)^{2}}=\frac{1}{\left(1+\frac{1}{n}\right)^{2}} \rightarrow 1 \text { as } n \rightarrow \infty
$$

whereas for the divergent series $\sum \frac{1}{n}$ we have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{1}{n+1}}{\frac{1}{n}}=\frac{n}{n+1}=\frac{1}{1+\frac{1}{n}} \rightarrow 1 \text { as } n \rightarrow \infty
$$

Therefore, if $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$, the series $\sum a_{n}$ might converge or it might diverge. In this case the Ratio Test fails and we must use some other test.

## The Root Test is used only if powers are involved.

The Root Test is used only if powers are involved.

## The Root Test

$\square$

The Root Test is used only if powers are involved.

## The Root Test

(1) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
(3) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$, the Root Test is inconclusive.

The Root Test is used only if powers are involved.

## The Root Test

(1) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
(2) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1$, or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty$ then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(3) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$, the Root Test is inconclusive.

The Root Test is used only if powers are involved.

## The Root Test

(1) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
(2) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1$, or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty$ then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(3) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$, the Root Test is inconclusive.

## Example.



## Example.

Test the convergence of the series $\sum_{n=1}^{\infty}\left(\frac{2 n+3}{3 n+2}\right)^{n}$

## Example.

Test the convergence of the series $\sum_{n=1}^{\infty}\left(\frac{2 n+3}{3 n+2}\right)^{n}$

## Solution:

## Example.

Test the convergence of the series $\sum_{n=1}^{\infty}\left(\frac{2 n+3}{3 n+2}\right)^{n}$

## Solution:

$$
a_{n}=\left(\frac{2 n+3}{3 n+2}\right)^{n}
$$

## Example.

Test the convergence of the series $\sum_{n=1}^{\infty}\left(\frac{2 n+3}{3 n+2}\right)^{n}$

## Solution:

$$
\begin{gathered}
a_{n}=\left(\frac{2 n+3}{3 n+2}\right)^{n} \\
\sqrt[n]{\left|a_{n}\right|}=\frac{2 n+3}{3 n+2}=\frac{2+\frac{3}{n}}{3+\frac{2}{n}} \rightarrow \frac{2}{3}<1 \text { as } n \rightarrow \infty
\end{gathered}
$$

## Example.

Test the convergence of the series $\sum_{n=1}^{\infty}\left(\frac{2 n+3}{3 n+2}\right)^{n}$
Solution:

$$
\begin{gathered}
a_{n}=\left(\frac{2 n+3}{3 n+2}\right)^{n} \\
\sqrt[n]{\left|a_{n}\right|}=\frac{2 n+3}{3 n+2}=\frac{2+\frac{3}{n}}{3+\frac{2}{n}} \rightarrow \frac{2}{3}<1 \text { as } n \rightarrow \infty
\end{gathered}
$$

Thus, the given series converges by the Root test.


[^0]:    is a convergent $p$-series $(p=2)$

