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Alternating Series Alternating Series

Consider the series whose terms are not necessarily positive.

An Alternating Series is a series whose terms are alternately
positive and negative.

Examples:

1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · · =

∞∑
n=1

(−1)n−1

n

−1
2
+

2
3
− 3

4
+

4
5
− 5

6
+ · · · =

∞∑
n=1

(−1)n n
n + 1
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Alternating Series The Alternating Series Test

If the alternating series of the form

∞∑
n=1

(−1)n−1 bn = b1 − b2 + b3 − b4 + b5 − b6 + · · · ,bn > 0

with,
1 bn+1 ≤ bn, for all n

2 limn→∞ bn = 0, (the limit of the nth term of the series is 0).

then the series is convergent.
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Alternating Series The Alternating Series Test

Example 1:

The alternating harmonic series,

1− 1
2
+

1
3
− 1

4
+ · · · =

∞∑
n=1

(−1)n−1

n

which satisfies,

1
1

n + 1
<

1
n
⇒ bn+1 < bn and

2 lim
n→∞

bn = lim
n→∞

1
n
= 0

So the series is convergent by the Alternating Series Test.
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Alternating Series The Alternating Series Test

Example 2:

The series
∞∑

n=1

(−1)n·3n
4n−1 is alternating.

But lim
n→∞

bn = lim
n→∞

3n
4n − 1

= lim
n→∞

3
4− 1

n

=
3
4

So the condition (2) is not satisfied, the limit of the nth term is not 0.

So the series diverges.
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Alternating Series The Alternating Series Test

Example 3:

Test the series
∞∑

n=1
(−1)n+1 n2

n3+1 for convergence or divergence.
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Alternating Series The Alternating Series Test

We construct the following

 

s2 = b1 − b2 ≥ 0, since b2 ≤ b1

s4 = s2 + (b3 − b4) ≥ s2, since b4 ≤ b3

s2n = s2n−2 + (b2n−1 − b2n) ≥ s2n−2, since b2n ≤ b2n−1, for all n
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Alternating Series The Alternating Series Test

Proof Contd.

Thus 0 ≤ S2 ≤ S4 ≤ S6 ≤ · · · ≤ S2n ≤ · · ·

and we can also write,

S2n = b1 − (b2 − b3)− (b4 − b5)− · · · − (b2n−2 − b2n−1)− b2n

Every term in brackets is positive, so S2n ≤ b1, for all n.

Therefore, the sequence {S2n} of even partial sums is increasing and
bounded above.

∴ limn→∞ S2n = S, so the series is convergent.
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Alternating Series Absolute Convergence

Given any series
∑

an, we can consider the corresponding series

∞∑
n=1

|an| = |a1|+ |a2|+ |a3|+ · · ·

whose terms are the absolute values of the terms of the original series.

Definition

A series
∑

an is called absolutely convergent if the series of absolute
values

∑
|an| is convergent.

Notice that if
∑

an is a series with positive terms, then |an| = an and so
absolute convergence is the same as convergence in this case.
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Alternating Series Absolute Convergence

Theorem

If a series
∑

an is absolutely convergent, then it is convergent.

Proof :

Consider the the inequality,

0 ≤ an + |an| ≤ 2 |an|

if
∑

an is absolutely convergent, then
∑
|an| is convergent, so

∑
2 |an|

is convergent.

Therefore, by the Comparison Test,
∑

(an + |an|) is convergent.

Then ∑
an =

∑
(an + |an|)−

∑
|an|
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Alternating Series Absolute Convergence

Example 1.

The series,
∞∑

n=1

(−1)n−1

n2 = 1− 1
22 +

1
32 −

1
42 + · · ·

is absolutely convergent because,

∞∑
n=1

∣∣∣∣(−1)n−1

n2

∣∣∣∣ = ∞∑
n=1

1
n2

= 1 +
1
22 +

1
32 +

1
42 + · · ·

is a convergent p-series (p = 2) .
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Alternating Series Absolute Convergence

Example 2.

This alternating harmonic series,

∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1
3
− 1

4
+ · · · is convergent.

But it is not absolutely convergent, because the corresponding series
of absolute value is,

∞∑
n=1

∣∣∣∣(−1)n−1

n

∣∣∣∣ = ∞∑
n=1

1
n

= 1 +
1
2
+

1
3
+

1
4
+ · · ·

which is the harmonic series and is therefore divergent.
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Alternating Series Conditionally Convergence

Definition

A series
∑

an is said to converge conditionally if
∑

an is converges
while

∑
|an| diverges (Not coverage absolutely).

Eg. 01.

∞∑
n=1

(−1)n

n
= −1 +

1
2
− 1

3
+

1
4
− · · · is converge conditionally.

Eg. 02.

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1
3
− 1

4
+ · · · is converge conditionally.
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Ratio and Root Tests

Outline

1 Alternating Series
Alternating Series
The Alternating Series Test
Absolute Convergence
Conditionally Convergence

2 Ratio and Root Tests
Ratio Tests
Root Tests
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Ratio and Root Tests Ratio Tests

The Ratio Test is effective with factorials and with combinations of
powers and factorials.

The Ratio Test

1 If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1, then the series
∞∑

n=1
an is absolutely

convergent and therefore it is convergent.

2 If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1 or lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =∞ then the series
∞∑

n=1
an is

divergent.

3 If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1, the Ratio Test is inconclusive; that is, no

conclusion can be drawn about the convergence or divergence of
∞∑

n=1
an.
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Ratio and Root Tests Ratio Tests

Eg. 01: Test the series
∞∑

n=1

(−1)n n3

3n for absolute convergence.

Solution: Using The Ratio Test with an = (−1)n n3

3n∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣∣∣
(−1)n+1(n+1)3

3n+1

(−1)nn3

3n

∣∣∣∣∣∣
=

(n + 1)3

3n+1 .
3n

n3

=
1
3

(
n + 1

n

)3

=
1
3

(
1 +

1
n

)3

→ 1
3
< 1 as n→∞

Thus, by the Ratio Test, the given series is absolutely convergent and
therefore convergent.
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Ratio and Root Tests Ratio Tests

Eg. 02: Test the convergence or divergence of the series
∞∑

n=1

nn

n!
.

Solution: Since the terms an =
nn

n!
are positive, we don’t need the

absolute value signs.

an+1

an
=

(n + 1)n+1

(n + 1)!
.
n!
nn =

(n + 1)(n + 1)n

(n + 1)!
.
n!
nn

=

(
n + 1

n

)n

=

(
1 +

1
n

)n

→ e as n→∞

Since e > 1, the given series is divergent by the Ratio Test.
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Ratio and Root Tests Ratio Tests

Proof of the Test:

Part (1): The idea is to compare the given series with a convergent
geometric series. Since L < 1, we choose a number r such that
L < r < 1. Since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L,

the ratio
∣∣∣∣an+1

an

∣∣∣∣ will eventually be less than r that is, there exists an

integer N such that ∣∣∣∣an+1

an

∣∣∣∣ < r , whenever n ≥ N

or equivalently,

|an+1| < |an| r , whenever n ≥ N → (1)
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Ratio and Root Tests Ratio Tests

Proof Contd.

Putting n successively equal to N,N + 1,N + 2,← in (1), we can obtain

|aN+1| < |aN | r
|aN+2| < |aN+1| r < |aN | r2

|aN+3| < |aN+2| r < |aN | r3

and, in general

|aN+k | < |aN | r k , for all k ≥ 1→ (2)
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Ratio and Root Tests Ratio Tests

Proof Contd.

Now the series
∞∑

k=1

|aN | r k = |aN | r + |aN | r2 + |aN | r3 + · · ·

is convergent because it is a geometric series with 0 < r < 1. So the
inequality (2) together with the Comparison Test, show that the series

∞∑
n=N+1

|an| =
∞∑

k=1

|aN+k | = |aN+1|+ |aN+2|+ |aN+3|+ · · ·

is also convergent. It follows that the series
∞∑

n=1
|an| is convergent.

( Recall that a finite number of terms doesn′t affect convergence. )

Therefore
∑

an is absolutely convergent.
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∞∑

n=1
|an| is convergent.

( Recall that a finite number of terms doesn′t affect convergence. )

Therefore
∑

an is absolutely convergent.
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Ratio and Root Tests Ratio Tests

Proof Contd.

Part (2): If∣∣∣∣an+1

an

∣∣∣∣→ L > 1 or
∣∣∣∣an+1

an

∣∣∣∣→∞, then the ratio
∣∣∣∣an+1

an

∣∣∣∣
will eventually be greater than 1; that is, there exists an integer N such
that ∣∣∣∣an+1

an

∣∣∣∣ > 1, whenever n ≥ N

This means that |an+1| > |an|, whenever n ≥ N and so

lim
n→∞

an 6= 0

Therefore,
∑

an diverges by the Test for Divergence.
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Ratio and Root Tests Ratio Tests

Part (3): If limn→∞
an+1
an

= 1, the test gives no information. For
instance, for the convergent series

∑ 1
n2 we have

∣∣∣∣an+1

an

∣∣∣∣ = 1
(n+1)2

1
n2

=
n2

(n + 1)2 =
1

(1 + 1
n )

2
→ 1 as n →∞

whereas for the divergent series
∑ 1

n we have∣∣∣∣an+1

an

∣∣∣∣ = 1
n+1

1
n

=
n

n + 1
=

1
1 + 1

n

→ 1 as n →∞

Therefore, if limn→∞
an+1
an

= 1, the series
∑

an might converge or it
might diverge. In this case the Ratio Test fails and we must use some
other test.
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Ratio and Root Tests Root Tests

The Root Test is used only if powers are involved.

The Root Test

1 If limn→∞
n
√
|an| = L < 1, then the series

∞∑
n=1

an is absolutely

convergent (and therefore convergent).

2 If limn→∞
n
√
|an| = L > 1, or limn→∞

n
√
|an| =∞ then the series

∞∑
n=1

an is divergent.

3 If limn→∞
n
√
|an| = 1, the Root Test is inconclusive.
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Ratio and Root Tests Root Tests

Example.

Test the convergence of the series
∞∑

n=1

(
2n+3
3n+2

)n

Solution:

an =

(
2n + 3
3n + 2

)n

n
√
|an| =

2n + 3
3n + 2

=
2 + 3

n

3 + 2
n

→ 2
3
< 1 as n→∞

Thus, the given series converges by the Root test.
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