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Alternating Series Alternating Series

Consider the series whose terms are

@ An Alternating Series is a series whose terms are alternately
positive and negative.

Examples:

3 4 5 6 n
n=1
1.2 3 4 = hon
23 475 6" —Zn_1(‘1) Nt
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If the alternating series of the form

S (1) by = by — b + by — by + bs — bg+ -+ , by > 0
n=1
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Alternating Series The Alternating Series Test

If the alternating series of the form

i(—1)nf1bn:b1—b2+b3—b4+b5—b6+
n=1

with,
Q bpi1 < by, foralln
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Alternating Series The Alternating Series Test

If the alternating series of the form
S (1) by =by —bo+bg—bs+bs—bg+--- by >0
n=1

with,

Q bpi1 < by, foralln

Q lim,_ b, = 0, (the limit of the n'™ term of the series is 0).
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Alternating Series The Alternating Series Test

If the alternating series of the form
S (1) bp=by —bp+ by — bs+bs—bs+- by >0
n=1

with,
Q bpi1 < by, foralln

Q lim,_ b, = 0, (the limit of the n'™ term of the series is 0).

then the series is convergent.
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Alternating Series The Alternating Series Test

Example 1:

The alternating harmonic series,

1T 1 1 & (=)
TatgTat T

which satisfies,

1

°n+1

1
<5 = bni1 < bp and

Q@ Iim b, = Iim 1:0

n—oo n—oo N

So the series is convergent by the Alternating Series Test.
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. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 5 7/26




Alternating Series The Alternating Series Test

Example 2:

The series Z (4n — is alternating.

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 5 7/26



Alternating Series The Alternating Series Test

Example 2:

The series Z (4n — is alternating.

3n , 3
Bt b= M2 1 = A1 4
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Alternating Series The Alternating Series Test

Example 2:

The series Z (4n — is alternating.

n .
But lim b, = Ilim 3 = lim i:f
n—oo n—oo 4N — 1 n—oo 4 — 15

So the condition (2) is not satisfied, the limit of the nth term is not 0.
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Alternating Series The Alternating Series Test

Example 2:

The series Z (4n — is alternating.

n .
But lim b, = Ilim 3 = lim i:f
n—oo n—oo 4N — 1 n—oo 4 — 15

So the condition (2) is not satisfied, the limit of the nth term is not 0.

So the series diverges.
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Example 3:
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Alternating Series The Alternating Series Test

Example 3:

(o]
. 2 .
Test the series > (—1)"" n3”+1 for convergence or divergence.
n=1
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We construct the following
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Alternating Series The Alternating Series Test

We construct the following

by
p— b:
+b,
p— b.‘
+ by
e
0 5, 5 5 t IHH}HH H 5 5 5

So = by — b > 0, since b, < by
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Alternating Series The Alternating Series Test

We construct the following

by
p— b:
+b,
p— b.‘
+ by
e
0 5, 5 5 t IHH}HH H 5 5 5

So = by — b > 0, since b, < by

Sy = So + (bs — by) > sp, since by < bs
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Alternating Series The Alternating Series Test

We construct the following

by
p— b:
+b,
p— b.‘
+ by
e
0 5, 5 5 t IHH}HH H 5 5 5

So = by — b > 0, since b, < by
Sy = So + (bs — by) > sp, since by < bs

Son = Sop—2 + (bBan—1 — b2pn) > S2n—2, since bz < bap_1, for all n
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Thus 0< S < 54 < §< - < S <

and we can also write,

Son = by — (b2 — b3) — (bg — bs) — -~ — (ban-2 — ban—1) — bz2n
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Proof Contd.

Thus 0< So < §4< S< - < Sop < -0
and we can also write,
Son = b1 — (b2 — b3) — (b4 — b5) — -~ — (b2n—2 — b2n—1) — b2n

Every term in brackets is positive, so Sp, < by, for all n.
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Proof Contd.

Thus 0< S5< S < <o < Sp< e

and we can also write,
Son = b1 — (b2 — b3) — (b4 — b5) — -~ — (b2n—2 — b2n—1) — b2n

Every term in brackets is positive, so Sp, < by, for all n.

Therefore, the sequence {S,,} of even partial sums is increasing and
bounded above.

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 5 10/26



Proof Contd.

Thus 0< S, < 54 < S< < Sp< -

and we can also write,

Son = b1 — (b2 — b3) — (ba — bs) — -+ — (ban—2 — bapn—1) — b2n
Every term in brackets is positive, so Sp, < by, for all n.

Therefore, the sequence {S,,} of even partial sums is increasing and
bounded above.

S dimpL 00 Sop = S, so the series is convergent.
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Alternating Series Absolute Convergence

Given any series ) an, we can consider the corresponding series
o
> lan| = |ai| + |az| + |as| + -
n=1

whose terms are the absolute values of the terms of the original series.
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Given any series ) an, we can consider the corresponding series

o

> lan| = |ai| + |az| + |as| + -

n=1
whose terms are the absolute values of the terms of the original series.
Definition

A series ) ap is called absolutely convergent if the series of absolute
values > |ap| is convergent.
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Alternating Series Absolute Convergence

Given any series ) an, we can consider the corresponding series

o

> lan| = |ai| + |az| + |as| + -

n=1
whose terms are the absolute values of the terms of the original series.
Definition

A series ) ap is called absolutely convergent if the series of absolute
values > |ap| is convergent.

Notice that if Y a, is a series with positive terms, then |a,| = a, and so
absolute convergence is the same as convergence in this case.
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Alternating Series Absolute Convergence

Theorem

If a series >, a, is absolutely convergent, then it is convergent.
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Theorem

If a series >, a, is absolutely convergent, then it is convergent.

Proof :
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Theorem

If a series >, a, is absolutely convergent, then it is convergent.

Proof :

Consider the the inequality,

0 < an+lan <2]ap|

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 5 12/26



Alternating Series Absolute Convergence

Theorem

If a series >, a, is absolutely convergent, then it is convergent.

Proof :
Consider the the inequality,

0 < an+lan <2]ap|

if >° an is absolutely convergent, then ) |ap| is convergent, so > 2 |ay|
is convergent.

Therefore, by the Comparison Test, > (an + |an|) is convergent.
Then

Z an = Z (an+lanl) — Z |anl
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Alternating Series Absolute Convergence

Example 1.
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Alternating Series Absolute Convergence

Example 1.

The series,

=, (—1) 11
A

is absolutely convergent because,
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Alternating Series Absolute Convergence

Example 1.
The series,
> (—1)"! 1 1 1
2 Tlmta et
n=1
is absolutely convergent because,
GRS
P et D
n=1 n=1
’ 1 1 1
== + ? + ? + E + .-

is a convergent p-series (p = 2).
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Alternating Series Absolute Convergence

Example 2.
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Alternating Series Absolute Convergence

Example 2.

This alternating harmonic series,

> (—1)n-1 1 1 1 .
ZT:1_§+§_Z+--- is convergent.

n=1

But it is not absolutely convergent, because the corresponding series
of absolute value is,
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Alternating Series Absolute Convergence

Example 2.

This alternating harmonic series,

iﬂ_1 1+1 1 is convergent
n 2 4 e

n=1

w

But it is not absolutely convergent, because the corresponding series
of absolute value is,

> [S

n=1

=1

>

1
> 5
1 1 1

=1tgtgtgt

which is the harmonic series and is therefore divergent.
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Alternating Series Conditionally Convergence

Definition

A series ) ap is said to converge conditionally if > a, is converges
while > |an| diverges (Not coverage absolutely).
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Definition

A series ) ap is said to converge conditionally if > a, is converges
while > |an| diverges (Not coverage absolutely).

Eg. 01.
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Alternating Series Conditionally Convergence

Definition

A series ) ap is said to converge conditionally if > a, is converges
while > |an| diverges (Not coverage absolutely).

Eg. 01.

yEU Tl
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Ratio and Root Tests Ratio Tests

The Ratio Test is effective with factorials and with combinations of
powers and factorials.
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Ratio and Root Tests Ratio Tests

The Ratio Test is effective with factorials and with combinations of
powers and factorials.

The Ratio Test

oo
Q If lim ‘a”“ = L < 1, then the series )" a, is absolutely
n—o0 dan n—1

convergent and therefore it is convergent.
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Ratio and Root Tests Ratio Tests

The Ratio Test is effective with factorials and with combinations of
powers and factorials.

The Ratio Test

Q If lim

n—o0

an+1
an

oo
= L < 1, then the series ) a, is absolutely

n=1

convergent and therefore it is convergent.

Q If lim

n—oo

ant1
an

divergent.

Dr. G.H.J. Lanel (USJP)

=L>1or lim

ant1
n—oo

an
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Ratio and Root Tests Ratio Tests

The Ratio Test is effective with factorials and with combinations of
powers and factorials.

The Ratio Test

Q If lim

n—o0

an+1
an

oo
= L < 1, then the series ) a, is absolutely
n=1

convergent and therefore it is convergent.

Q If lim

n—oo

ant1
an

divergent.

Q If lim

n—oo

an+1
an

ant1

an

=L>1or lim
n—oo

n=1

=1, the Ratio Test is inconclusive; that is, no

o0
= oo then the series ) apis

conclusion can be drawn about the convergence or divergence of

o
> an.
n=1
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Ratio and Root Tests Ratio Tests

20 3
: Test the series » (—1)

n
”ﬁ for absolute convergence.
n=1
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Ratio and Root Tests Ratio Tests

20 3
: Test the series » (—1)

nm”
n=1

3n

Solution: Using The Ratio Test with a, = (—1)"%5;
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Ratio and Root Tests Ratio Tests

o0 3

. n
: Test the series E (—1)"— for absolute convergence.
n=1

3n
Solution: Using The Ratio Test with a, = (—1)"Z;

(=) (n+1)?

an+1 _ 3n+1
—1)nn3
an ( 3)nn
_(n+1)3 3"
3+l 8

n+1\°
n
1\° 1
1+E —=<l1asn— o

3
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Ratio and Root Tests Ratio Tests

20 3
: Test the series » (—1)

n
”ﬁ for absolute convergence.
n=1

Solution: Using The Ratio Test with a, = (—1)"%5;

(1) (1)

an+1 o 3n+1
—1)n 3
an ( 3)nn
_(n+1)3 3"
3+l 8

1 n+1°
3 n
1 1% 1
=-(1+=-) = 5s<1lasn— oo
n 3

Thus, by the Ratio Test, the given series is absolutely convergent and
therefore convergent.
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Ratio and Root Tests Ratio Tests

X n
. . n

: Test the convergence or divergence of the series E R
n=1 "
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Ratio and Root Tests Ratio Tests

X n
. . n
: Test the convergence or divergence of the series E R

n=1
. . n" . ,
Solution: Since the terms a, = o are positive, we don’t need the

absolute value signs.
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Ratio and Root Tests Ratio Tests

X n
. . n

: Test the convergence or divergence of the series Z R
n=1 "

. . n" " ,
Solution: Since the terms a, = o are positive, we don’t need the
absolute value signs. '

anet (N 1) nl (n+1)(n+1)" Nt

an (n+ 1) "nn (n+1)!  "nn
_ <n+1>”
n

1 n
:<1+n> —easn— oo
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Ratio and Root Tests Ratio Tests

X n
. . n
: Test the convergence or divergence of the series Z R
i n=1 "
. . n . ,
Solution: Since the terms a, = o are positive, we don’t need the
absolute value signs. '

an (n+1)! "'nn (n+1) o
_ <n+1>”
n

1 n
:<1+n> —easn— oo

anet (N 1) nl (n+1)(n+1)" Nt

Since e > 1, the given series is divergent by the Ratio Test.
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Ratio and Root Tests Ratio Tests

Proof of the Test:
Part (1): The idea is to compare the given series with a convergent

geometric series. Since L < 1, we choose a number r such that
L <r<1. Since
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Ratio and Root Tests Ratio Tests

Proof of the Test:

Part (1): The idea is to compare the given series with a convergent
geometric series. Since L < 1, we choose a number r such that

L <r<1. Since
an+1

an

lim
n—oo

=1L,
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Ratio and Root Tests Ratio Tests

Proof of the Test:

Part (1): The idea is to compare the given series with a convergent
geometric series. Since L < 1, we choose a number r such that
L<r<1.Since

ant1

= L,
an

lim
n—oo

the ratio a;+1 will eventually be less than r that is, there exists an

n
integer N such that
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Proof of the Test:

Part (1): The idea is to compare the given series with a convergent
geometric series. Since L < 1, we choose a number r such that
L<r<1.Since

ant1

= L,
an

lim
n—oo

the ratio a;+1 will eventually be less than r that is, there exists an

n
integer N such that

an+1

< r, whenever n > N

an
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Ratio and Root Tests Ratio Tests

Proof of the Test:

Part (1): The idea is to compare the given series with a convergent
geometric series. Since L < 1, we choose a number r such that

L <r<1. Since
an+1

an

lim
n—oo

=1L,

ant1

the ratio will eventually be less than r that is, there exists an

n
integer N such that

an+1

< r, whenever n > N

an
or equivalently,

|ant1] < |an| r, whenevern> N — (1)
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Proof Contd.
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Proof Contd.

Putting n successively equalto NN+ 1, N+2,+ in (1), we can obtain
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Proof Contd.

Putting n successively equalto NN+ 1, N+2,+ in (1), we can obtain

lans1] < |an|r
lans2| < |any1|r < |an| r?

|antal < langelr < |an|r®
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Proof Contd.

Putting n successively equalto NN+ 1, N+2,+ in (1), we can obtain

lans1] < |an|r
lans2| < |any1|r < |an| r?

|antal < langelr < |an|r®

and, in general

lanyk| < |an|rk, forallk > 1 — (2)
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Proof Contd.
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Proof Contd.

Now the series

o0
> lanl r* = law| -+ law| 2+ |an| P + -
k=1
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Proof Contd.

Now the series

o0
> lanl r* = law| -+ law| 2+ |an| P + -
k=1

is convergent because it is a geometric series with 0 < r < 1. So the
inequality (2) together with the Comparison Test, show that the series
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Proof Contd.

Now the series
oo
> lan|rf = lan|r + lan| r? + [an] P+ -
k=1

is convergent because it is a geometric series with 0 < r < 1. So the
inequality (2) together with the Comparison Test, show that the series

oo oo
> lanl =) lanskl = lanct| + lantel + [anis| + -+
n=N+1 k=1
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Proof Contd.

Now the series
o0
> lanl r* = law| -+ law| 2+ |an| P + -
k=1

is convergent because it is a geometric series with 0 < r < 1. So the
inequality (2) together with the Comparison Test, show that the series

oo oo
> lanl =) lanskl = lanct| + lantel + [anis| + -+
n=N+1 k=1

is also convergent. It follows that the series > |ap| is convergent.
n=1

( Recall that a finite number of terms doesn’t affect convergence. )

Therefore ) a, is absolutely convergent.
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Proof Contd.

Part (2): If
E
it [ > 1or a”“‘ — o0, then the ratio ‘”“
an an an
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will eventually be greater than 1; that is, there exists an integer N such
that
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Ratio and Root Tests Ratio Tests

Proof Contd.

Part (2): If
Anit| s 1or |2 L oo, then the ratio ‘a”“
an an an

will eventually be greater than 1; that is, there exists an integer N such
that

a
i1l S 1, whenevern > N

an
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Ratio and Root Tests Ratio Tests

Proof Contd.
Part (2): If
ﬁ —L[L>1o0r ﬁ — 00, then the ratio ‘an+1
an an an

will eventually be greater than 1; that is, there exists an integer N such
that
an+1

> 1, whenevern > N

an

This means that |a,1| > |an|, whenever n > N and so

lim a, #0
n—oo n ?é
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Ratio and Root Tests Ratio Tests

Proof Contd.
Part (2): If
it S qor |2 s oo, then the ratio |20+
an an an

will eventually be greater than 1; that is, there exists an integer N such

that

a
"1\ > 1, whenevern > N

an

This means that |a,.1| > |an|, whenever n > N and so
nll—>m<>o an ?é O
Therefore, > a, diverges by the Test for Divergence.
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Ratio and Root Tests Ratio Tests

Part (3): If limy_ a;:‘ =1, the test gives no information. For

instance, for the convergent series > # we have
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Ratio and Root Tests Ratio Tests

Part (3): If limy_ a;:‘ =1, the test gives no information. For

instance, for the convergent series > # we have

(172 L
1 2 1
2 (n+1) (1+ 5)2

an+1
an

’
—1 asn — o
n2
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Ratio and Root Tests Ratio Tests

Part (3): If limy_ a;:‘ =1, the test gives no information. For

instance, for the convergent series > # we have

1)z L
X (n+1)2  (1+1)2

an+1
an

’
—1 asn — o
n? n

whereas for the divergent series % we have
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Ratio and Root Tests Ratio Tests

Part (3): If limy_ a;:‘ =1, the test gives no information. For
instance, for the convergent series > # we have

1)z n? 1
p— p— 1
] (n+1)2 (1+1)2—> asn — oo

an+1
an

1
n2 n

whereas for the divergent series % we have

1

1 n
= o - - =1 asn — oo
= n+1 1+

an41
an

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 5 24/26



Ratio and Root Tests Ratio Tests

Part (3): If limy_ a;:‘ =1, the test gives no information. For

instance, for the convergent series > # we have

’
(17 _ n? _ 1
% (n+1)2  (1+1)2

n

an+1
an

—1 asn — o

whereas for the divergent series % we have

1

dny1| _ nl n
1
n

an

= = 1—>1asn—>oo
n+1 1+ 5

Therefore, if lim,_, a;:‘ =1, the series }_ a, might converge or it
might diverge. In this case the Ratio Test fails and we must use some

other test.
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Ratio and Root Tests Root Tests

The Root Test is used only if powers are involved.
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Ratio and Root Tests Root Tests

The Root Test is used only if powers are involved.

The Root Test

Q Iflim,. {/|an] = L < 1,then the series Y a, is absolutely
n=1
convergent (and therefore convergent).
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Ratio and Root Tests Root Tests

The Root Test is used only if powers are involved.

The Root Test

Q Iflim,. {/|an] = L < 1,then the series Y a, is absolutely
n=1
convergent (and therefore convergent).

Q Iflim, /]an| = L > 1, orlim,_, /|an| = oo then the series

> apis divergent.
n=1
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Ratio and Root Tests Root Tests

The Root Test is used only if powers are involved.

The Root Test

Q Iflim,. {/|an] = L < 1,then the series Y a, is absolutely
n=1
convergent (and therefore convergent).

Q Iflim, /]an| = L > 1, orlim,_, /|an| = oo then the series

> apis divergent.
n=1

Q Iflim,_ /|an| = 1, the Root Test is inconclusive.
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Ratio and Root Tests Root Tests

Example.
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Example.

0 n
Test the convergence of the series (%Zig)
n=1
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0 n
Test the convergence of the series (ggig)
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Ratio and Root Tests Root Tests

Example.

0 n
Test the convergence of the series (ggig)
n=1

o 2n+3\"
"~ \3n+2

Solution:
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Ratio and Root Tests Root Tests

Example.
iae S (2n43\"
Test the convergence of the series (3212)
n=1
Solution:
2 — 2n+3
" \8n+2
/o] = 205 _ 2+3 S22 tasno s
" 8n+2 342 '3
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Ratio and Root Tests Root Tests

Example.
. o0 2043 n
Test the convergence of the series (3212)
n=1
Solution:

] 2n+3 2+3
/lan| = = <lasn— oo

2 — 2n+3

"~ \3n+2
L2

3n+2 3+2 3

Thus, the given series converges by the Root test.
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