MAT 122 2.0 Calculus

Dr. G.H.J. Lanel

Lecture 5

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

▲ ■ ▶ ■ つへの Lecture 5 1/26

Outline

Alternating Series

- Alternating Series
- The Alternating Series Test
- Absolute Convergence
- Conditionally Convergence

2 Ratio and Root Tests

- Ratio Tests
- Root Tests

→ ∃ →

Outline

Alternating Series

- Alternating Series
- The Alternating Series Test
- Absolute Convergence
- Conditionally Convergence

2 Ratio and Root Tests

- Ratio Tests
- Root Tests

4 A N

 An Alternating Series is a series whose terms are alternately positive and negative.

Examples:

Dr. G.H.J. Lanel (USJP)

• • • • • • • • • • • •

 An Alternating Series is a series whose terms are alternately positive and negative.

Examples:

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 An Alternating Series is a series whose terms are alternately positive and negative.

Examples:

Dr. G.H.J. Lanel (USJP)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 An Alternating Series is a series whose terms are alternately positive and negative.

Examples:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \dots = \sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$$

< ロ > < 同 > < 回 > < 回 >

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots, b_n > 0$$

with

 $b_{n+1} \leq b_n$, for all *n*

I im $_{n\to\infty} b_n = 0$, (the limit of the n^{th} term of the series is 0).

then the series is convergent.

$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots, b_n > 0$

with,

 $\bigcirc b_{n+1} \le b_n, \text{ for all } n$

Im $_{n\to\infty} b_n = 0$, (the limit of the n^{th} term of the series is 0).

then the series is convergent.

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots, b_n > 0$$

with

•
$$b_{n+1} \leq b_n$$
, for all n

Iim $_{n\to\infty} b_n = 0$, (the limit of the n^{th} term of the series is 0).

then the series is convergent.

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots, b_n > 0$$

with,

I $\lim_{n\to\infty} b_n = 0$, (the limit of the n^{th} term of the series is 0).

then the series is convergent.

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots, b_n > 0$$

with,

•
$$b_{n+1} \leq b_n$$
, for all n

2 $\lim_{n\to\infty} b_n = 0$, (the limit of the n^{th} term of the series is 0).

then the series is convergent.

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots, b_n > 0$$

with,

•
$$b_{n+1} \leq b_n$$
, for all n

2 $\lim_{n\to\infty} b_n = 0$, (the limit of the n^{th} term of the series is 0).

then the series is convergent.

The alternating harmonic series,

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

which satisfies,

$$\frac{1}{n+1} < \frac{1}{n} \Rightarrow b_{n+1} < b_n \text{ and}$$
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n} = 0$$

So the series is convergent by the Alternating Series Test.

Dr. G.H.J. Lanel (USJP)

The alternating harmonic series,

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

which satisfies,

$$\frac{1}{n+1} < \frac{1}{n} \Rightarrow b_{n+1} < b_n \text{ and }$$
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n} = 0$$

So the series is convergent by the Alternating Series Test.

Dr. G.H.J. Lanel (USJP)

The alternating harmonic series,

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

which satisfies,

$$\frac{1}{n+1} < \frac{1}{n} \Rightarrow b_{n+1} < b_n \text{ and}$$
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n} = 0$$

So the series is convergent by the Alternating Series Test.

Dr. G.H.J. Lanel (USJP)

The alternating harmonic series,

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

which satisfies,

1
$$\frac{1}{n+1} < \frac{1}{n} \Rightarrow b_{n+1} < b_n$$
 an
1 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n} = 0$

So the series is convergent by the Alternating Series Test.

Dr. G.H.J. Lanel (USJP)

The alternating harmonic series,

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

which satisfies,

• $\frac{1}{n+1} < \frac{1}{n} \Rightarrow b_{n+1} < b_n$ and • $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n} = 0$

So the series is convergent by the Alternating Series Test.

Dr. G.H.J. Lanel (USJP)

The alternating harmonic series,

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

which satisfies,

1
$$\frac{1}{n+1} < \frac{1}{n} \Rightarrow b_{n+1} < b_n$$
 and
1 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n} = 0$

So the series is convergent by the Alternating Series Test.

Dr. G.H.J. Lanel (USJP)

The alternating harmonic series,

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

which satisfies,

1
$$\frac{1}{n+1} < \frac{1}{n} \Rightarrow b_{n+1} < b_n$$
 and
1 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n} = 0$

So the series is convergent by the Alternating Series Test.

Dr. G.H.J. Lanel (USJP)

< ロ > < 同 > < 回 > < 回 >

The series $\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 3n}{4n-1}$ is alternating

But
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{3n}{4n-1} = \lim_{n \to \infty} \frac{3}{4-\frac{1}{n}} = \frac{3}{4}$$

So the condition (2) is not satisfied, the limit of the *n*th term is not 0.

So the series diverges.

The series $\sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot 3n}{4n-1}$ is alternating.

But
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{3n}{4n-1} = \lim_{n \to \infty} \frac{3}{4-\frac{1}{n}} = \frac{3}{4}$$

So the condition (2) is not satisfied, the limit of the *n*th term is not 0.

So the series diverges.

< ロ > < 同 > < 回 > < 回 >

The series $\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 3n}{4n-1}$ is alternating.

But
$$\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{3n}{4n-1} = \lim_{n\to\infty} \frac{3}{4-\frac{1}{n}} = \frac{3}{4}$$

So the condition (2) is not satisfied, the limit of the *n*th term is not 0.

So the series diverges.

< ロ > < 同 > < 回 > < 回 >

The series $\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 3n}{4n-1}$ is alternating.

But
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{3n}{4n-1} = \lim_{n \to \infty} \frac{3}{4-\frac{1}{n}} = \frac{3}{4}$$

So the condition (2) is not satisfied, the limit of the *n*th term is not 0.

So the series diverges.

The series $\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 3n}{4n-1}$ is alternating.

But
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{3n}{4n-1} = \lim_{n \to \infty} \frac{3}{4-\frac{1}{n}} = \frac{3}{4}$$

So the condition (2) is not satisfied, the limit of the *n*th term is not 0.

So the series diverges.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example 3:

Test the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$ for convergence or divergence.

Dr. G.H.J. Lanel (USJP)

Example 3:

Test the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$ for convergence or divergence.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

 $s_2 = b_1 - b_2 \ge 0$, since $b_2 \le b_1$

 $s_4 = s_2 + (b_3 - b_4) \ge s_2$, since $b_4 \le b_3$

 $s_{2n} = s_{2n-2} + (b_{2n-1} - b_{2n}) \geq s_{2n-2}$, since $b_{2n} \leq b_{2n-1}$, for all n

イロト 不得 トイヨト イヨト 二日

 $s_2 = b_1 - b_2 \ge 0$, since $b_2 \le b_1$

 $s_4 = s_2 + (b_3 - b_4) \ge s_2$, since $b_4 \le b_3$

 $s_{2n} = s_{2n-2} + (b_{2n-1} - b_{2n}) \geq s_{2n-2},$ since $b_{2n} \leq b_{2n-1},$ for all n

Dr. G.H.J. Lanel (USJP)

イロト 不得 トイヨト イヨト ニヨー

 $s_2 = b_1 - b_2 \ge 0$, since $b_2 \le b_1$

 $s_4 = s_2 + (b_3 - b_4) \ge s_2$, since $b_4 \le b_3$

 $s_{2n} = s_{2n-2} + (b_{2n-1} - b_{2n}) \geq s_{2n-2},$ since $b_{2n} \leq b_{2n-1},$ for all n

Dr. G.H.J. Lanel (USJP)

 $s_2 = b_1 - b_2 \ge 0$, since $b_2 \le b_1$

 $s_4 = s_2 + (b_3 - b_4) \ge s_2$, since $b_4 \le b_3$

 $s_{2n} = s_{2n-2} + (b_{2n-1} - b_{2n}) \ge s_{2n-2}$, since $b_{2n} \le b_{2n-1}$, for all n

Dr. G.H.J. Lanel (USJP)

Thus $0 \leq S_2 \leq S_4 \leq S_6 \leq \cdots \leq S_{2n} \leq \cdots$

and we can also write,

$$S_{2n} = b_1 - (b_2 - b_3) - (b_4 - b_5) - \dots - (b_{2n-2} - b_{2n-1}) - b_{2n}$$

Every term in brackets is positive, so $S_{2n} \leq b_1$, for all *n*.

Therefore, the sequence $\{S_{2n}\}$ of even partial sums is increasing and bounded above.

: $\lim_{n\to\infty} S_{2n} = S$, so the series is convergent.

Thus $0 \leq S_2 \leq S_4 \leq S_6 \leq \cdots \leq S_{2n} \leq \cdots$

and we can also write,

$$S_{2n} = b_1 - (b_2 - b_3) - (b_4 - b_5) - \dots - (b_{2n-2} - b_{2n-1}) - b_{2n}$$

Every term in brackets is positive, so $S_{2n} \leq b_1$, for all *n*.

Therefore, the sequence $\{S_{2n}\}$ of even partial sums is increasing and bounded above.

 \therefore lim_{$n\to\infty$} $S_{2n} = S$, so the series is convergent.

Thus $0 \leq S_2 \leq S_4 \leq S_6 \leq \cdots \leq S_{2n} \leq \cdots$

and we can also write,

$$S_{2n} = b_1 - (b_2 - b_3) - (b_4 - b_5) - \dots - (b_{2n-2} - b_{2n-1}) - b_{2n}$$

Every term in brackets is positive, so $S_{2n} \leq b_1$, for all *n*.

Therefore, the sequence $\{S_{2n}\}$ of even partial sums is increasing and bounded above.

 \therefore lim_{$n\to\infty$} $S_{2n} = S$, so the series is convergent.

Thus
$$0 \leq S_2 \leq S_4 \leq S_6 \leq \cdots \leq S_{2n} \leq \cdots$$

and we can also write,

$$S_{2n} = b_1 - (b_2 - b_3) - (b_4 - b_5) - \dots - (b_{2n-2} - b_{2n-1}) - b_{2n}$$

Every term in brackets is positive, so $S_{2n} \leq b_1$, for all *n*.

Therefore, the sequence $\{S_{2n}\}$ of even partial sums is increasing and bounded above.

 \therefore lim_{$n\to\infty$} $S_{2n} = S$, so the series is convergent.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thus
$$0 \leq S_2 \leq S_4 \leq S_6 \leq \cdots \leq S_{2n} \leq \cdots$$

and we can also write,

$$S_{2n} = b_1 - (b_2 - b_3) - (b_4 - b_5) - \dots - (b_{2n-2} - b_{2n-1}) - b_{2n}$$

Every term in brackets is positive, so $S_{2n} \leq b_1$, for all *n*.

Therefore, the sequence $\{S_{2n}\}$ of even partial sums is increasing and bounded above.

 \therefore lim_{$n\to\infty$} $S_{2n} = S$, so the series is convergent.
Proof Contd.

Thus $0 \leq S_2 \leq S_4 \leq S_6 \leq \cdots \leq S_{2n} \leq \cdots$

and we can also write,

$$S_{2n} = b_1 - (b_2 - b_3) - (b_4 - b_5) - \cdots - (b_{2n-2} - b_{2n-1}) - b_{2n}$$

Every term in brackets is positive, so $S_{2n} \leq b_1$, for all *n*.

Therefore, the sequence $\{S_{2n}\}$ of even partial sums is increasing and bounded above.

\therefore lim $_{n\to\infty} S_{2n} = S$, so the series is convergent.

Proof Contd.

Thus $0 \leq S_2 \leq S_4 \leq S_6 \leq \cdots \leq S_{2n} \leq \cdots$

and we can also write,

$$S_{2n} = b_1 - (b_2 - b_3) - (b_4 - b_5) - \dots - (b_{2n-2} - b_{2n-1}) - b_{2n}$$

Every term in brackets is positive, so $S_{2n} \leq b_1$, for all *n*.

Therefore, the sequence $\{S_{2n}\}$ of even partial sums is increasing and bounded above.

 $\therefore \lim_{n\to\infty} S_{2n} = S$, so the series is convergent.

$$\sum_{n=1}^{\infty} |a_n| = |a_1| + |a_2| + |a_3| + \cdots$$

whose terms are the absolute values of the terms of the original series.

Definition

A series $\sum a_n$ is called absolutely convergent if the series of absolute values $\sum |a_n|$ is convergent.

Notice that if $\sum a_n$ is a series with positive terms, then $|a_n| = a_n$ and so absolute convergence is the same as convergence in this case.

< 日 > < 同 > < 回 > < 回 > < □ > <

$$\sum_{n=1}^{\infty} |a_n| = |a_1| + |a_2| + |a_3| + \cdots$$

whose terms are the absolute values of the terms of the original series.

Definition

A series $\sum a_n$ is called absolutely convergent if the series of absolute values $\sum |a_n|$ is convergent.

Notice that if $\sum a_n$ is a series with positive terms, then $|a_n| = a_n$ and so absolute convergence is the same as convergence in this case.

$$\sum_{n=1}^{\infty} |a_n| = |a_1| + |a_2| + |a_3| + \cdots$$

whose terms are the absolute values of the terms of the original series.

Definition

A series $\sum a_n$ is called absolutely convergent if the series of absolute values $\sum |a_n|$ is convergent.

Notice that if $\sum a_n$ is a series with positive terms, then $|a_n| = a_n$ and so absolute convergence is the same as convergence in this case.

$$\sum_{n=1}^{\infty} |a_n| = |a_1| + |a_2| + |a_3| + \cdots$$

whose terms are the absolute values of the terms of the original series.

Definition

A series $\sum a_n$ is called absolutely convergent if the series of absolute values $\sum |a_n|$ is convergent.

Notice that if $\sum a_n$ is a series with positive terms, then $|a_n| = a_n$ and so absolute convergence is the same as convergence in this case.

・ロト ・ 四ト ・ ヨト ・ ヨト

$$\sum_{n=1}^{\infty} |a_n| = |a_1| + |a_2| + |a_3| + \cdots$$

whose terms are the absolute values of the terms of the original series.

Definition

A series $\sum a_n$ is called absolutely convergent if the series of absolute values $\sum |a_n|$ is convergent.

Notice that if $\sum a_n$ is a series with positive terms, then $|a_n| = a_n$ and so absolute convergence is the same as convergence in this case.

If a series $\sum a_n$ is absolutely convergent, then it is convergent.

Proof :

Consider the the inequality,

 $0 \leq a_n + |a_n| \leq 2|a_n|$

if $\sum a_n$ is absolutely convergent, then $\sum |a_n|$ is convergent, so $\sum 2 |a_n|$ is convergent.

Therefore, by the Comparison Test, $\sum (a_n + |a_n|)$ is convergent.

Then

$$\sum a_n = \sum (a_n + |a_n|) - \sum |a_n|$$

If a series $\sum a_n$ is absolutely convergent, then it is convergent.

Proof :

Consider the the inequality,

 $0 \leq a_n + |a_n| \leq 2|a_n|$

if $\sum a_n$ is absolutely convergent, then $\sum |a_n|$ is convergent, so $\sum 2 |a_n|$ is convergent.

Therefore, by the Comparison Test, $\sum (a_n + |a_n|)$ is convergent.

Then

$$\sum a_n = \sum (a_n + |a_n|) - \sum |a_n|$$

Dr. G.H.J. Lanel (USJP)

If a series $\sum a_n$ is absolutely convergent, then it is convergent.

Proof :

Consider the the inequality,

 $0 \leq a_n + |a_n| \leq 2 |a_n|$

if $\sum a_n$ is absolutely convergent, then $\sum |a_n|$ is convergent, so $\sum 2 |a_n|$ is convergent.

Therefore, by the Comparison Test, $\sum (a_n + |a_n|)$ is convergent.

Then

$$\sum a_n = \sum (a_n + |a_n|) - \sum |a_n|$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If a series $\sum a_n$ is absolutely convergent, then it is convergent.

Proof :

Consider the the inequality,

$$0 \leq a_n + |a_n| \leq 2 |a_n|$$

if $\sum a_n$ is absolutely convergent, then $\sum |a_n|$ is convergent, so $\sum 2 |a_n|$ is convergent.

Therefore, by the Comparison Test, $\sum (a_n + |a_n|)$ is convergent.

Then

$$\sum a_n = \sum \left(a_n + |a_n|\right) - \sum |a_n|$$

Example 1.

The series,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$$

is absolutely convergent because,

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
$$= 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$$

is a convergent p-series (p = 2).

イロト イポト イヨト イヨト

Example 1.

The series,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$$

is absolutely convergent because,

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
$$= 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$$

is a convergent p-series (p = 2).

Example 1.

The series,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$$

is absolutely convergent because,

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
$$= 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$$

is a convergent p-series (p = 2).

This alternating harmonic series,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$
 is convergent.

But it is not absolutely convergent, because the corresponding series of absolute value is,

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$
$$= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

which is the harmonic series and is therefore divergent.

Dr. G.H.J. Lanel (USJP)

This alternating harmonic series,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$
 is convergent.

But it is not absolutely convergent, because the corresponding series of absolute value is,

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$
$$= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

which is the harmonic series and is therefore divergent.

Dr. G.H.J. Lanel (USJP)

イロト イポト イヨト イヨト

This alternating harmonic series,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots \text{ is convergent.}$$

But it is not absolutely convergent, because the corresponding series of absolute value is,

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$
$$= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

which is the harmonic series and is therefore divergent.

Dr. G.H.J. Lanel (USJP)

This alternating harmonic series,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots \text{ is convergent.}$$

But it is not absolutely convergent, because the corresponding series of absolute value is,

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$
$$= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

which is the harmonic series and is therefore divergent.

Dr. G.H.J. Lanel (USJP)

Definition

A series $\sum a_n$ is said to converge conditionally if $\sum a_n$ is converges while $\sum |a_n|$ diverges (*Not coverage absolutely*).

Dr. G.H.J. Lanel (USJP)

Definition

A series $\sum a_n$ is said to converge conditionally if $\sum a_n$ is converges while $\sum |a_n|$ diverges (*Not coverage absolutely*).

Eg. 01. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = -1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \cdots$ is converge conditionally.

Definition

A series $\sum a_n$ is said to converge conditionally if $\sum a_n$ is converges while $\sum |a_n|$ diverges (*Not coverage absolutely*).

Eg. 01. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = -1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \cdots$ is converge conditionally. Eq. 02. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$ is converge conditionally.

Dr. G.H.J. Lanel (USJP)

Outline

Alternating Series

- Alternating Series
- The Alternating Series Test
- Absolute Convergence
- Conditionally Convergence

2 Ratio and Root Tests

- Ratio Tests
- Root Tests

A (10) A (10) A (10)

The Ratio Test

• If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent and therefore it is convergent.

If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
 or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum_{n=1}^{\infty} a_n$.

The Ratio Test

• If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent and therefore it is convergent.

If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
 or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum_{n=1}^{\infty} a_n$.

Dr. G.H.J. Lanel (USJP)

The Ratio Test

• If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent and therefore it is convergent.

If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
 or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum_{n=1}^{\infty} a_n$.

Dr. G.H.J. Lanel (USJP)

The Ratio Test

• If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent and therefore it is convergent.

② If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
 or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum_{n=1}^{\infty} a_n$.

The Ratio Test

• If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent and therefore it is convergent.

If
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
 or $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum_{n=1}^{\infty} a_n$.

The Ratio Test

• If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent and therefore it is convergent.

If
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
 or $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

So If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum_{n=1}^{\infty} a_n$.

Solution: Using The Ratio Test with $a_n = (-1)^n \frac{n^2}{3^n}$

$$\frac{a_{n+1}}{a_n} = \left| \frac{\frac{(-1)^{n+1}(n+1)^3}{3^{n+1}}}{\frac{(-1)^n n^3}{3^n}} \right|$$
$$= \frac{(n+1)^3}{3^{n+1}} \cdot \frac{3^n}{n^3}$$
$$= \frac{1}{3} \left(\frac{n+1}{n} \right)^3$$
$$= \frac{1}{3} \left(1 + \frac{1}{n} \right)^3 \to \frac{1}{3} < 1 \text{ as } n \to \infty$$

Thus, by the Ratio Test, the given series is absolutely convergent and therefore convergent.

Dr. G.H.J. Lanel (USJP)

Solution: Using The Ratio Test with $a_n = (-1)^n \frac{n^3}{3^n}$

Thus, by the Ratio Test, the given series is absolutely convergent and therefore convergent.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Solution: Using The Ratio Test with $a_n = (-1)^n \frac{n^3}{3^n}$

$$\frac{a_{n+1}}{a_n} = \left| \frac{\frac{(-1)^{n+1}(n+1)^3}{3^{n+1}}}{\frac{(-1)^n n^3}{3^n}} \right|$$
$$= \frac{(n+1)^3}{3^{n+1}} \cdot \frac{3^n}{n^3}$$
$$= \frac{1}{3} \left(\frac{n+1}{n} \right)^3$$
$$= \frac{1}{3} \left(1 + \frac{1}{n} \right)^3 \to \frac{1}{3} < 1 \text{ as } n \to \infty$$

Thus, by the Ratio Test, the given series is absolutely convergent and therefore convergent.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

イロト イヨト イヨト イヨト

Solution: Using The Ratio Test with $a_n = (-1)^n \frac{n^3}{3^n}$

$$\begin{aligned} \frac{a_{n+1}}{a_n} &= \left| \frac{\frac{(-1)^{n+1}(n+1)^3}{3^{n+1}}}{\frac{(-1)^n n^3}{3^n}} \right| \\ &= \frac{(n+1)^3}{3^{n+1}} \cdot \frac{3^n}{n^3} \\ &= \frac{1}{3} \left(\frac{n+1}{n} \right)^3 \\ &= \frac{1}{3} \left(1 + \frac{1}{n} \right)^3 \to \frac{1}{3} < 1 \text{ as } n \to \infty \end{aligned}$$

Thus, by the Ratio Test, the given series is absolutely convergent and therefore convergent.

Dr. G.H.J. Lanel (USJP)

イロト イヨト イヨト イヨト

Solution: Since the terms $a_n = \frac{n!}{n!}$ are positive, we don't need the absolute value signs.

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \frac{(n+1)(n+1)^n}{(n+1)!} \cdot \frac{n!}{n^n}$$
$$= \left(\frac{n+1}{n}\right)^n$$
$$= \left(1 + \frac{1}{n}\right)^n \to e \text{ as } n \to \infty$$

Since e > 1, the given series is divergent by the Ratio Test.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

イロト イポト イヨト イヨ

Solution: Since the terms $a_n = \frac{n^n}{n!}$ are positive, we don't need the absolute value signs.

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \frac{(n+1)(n+1)^n}{(n+1)!} \cdot \frac{n!}{n^n}$$
$$= \left(\frac{n+1}{n}\right)^n$$
$$= \left(1 + \frac{1}{n}\right)^n \to e \text{ as } n \to \infty$$

Since e > 1, the given series is divergent by the Ratio Test.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

イロト イ団ト イヨト イヨト

Solution: Since the terms $a_n = \frac{n^n}{n!}$ are positive, we don't need the absolute value signs.

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \frac{(n+1)(n+1)^n}{(n+1)!} \cdot \frac{n!}{n^n}$$
$$= \left(\frac{n+1}{n}\right)^n$$
$$= \left(1 + \frac{1}{n}\right)^n \to e \text{ as } n \to \infty$$

Since e > 1, the given series is divergent by the Ratio Test.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

イロト イポト イヨト イヨ

Solution: Since the terms $a_n = \frac{n^n}{n!}$ are positive, we don't need the absolute value signs.

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \frac{(n+1)(n+1)^n}{(n+1)!} \cdot \frac{n!}{n^n}$$
$$= \left(\frac{n+1}{n}\right)^n$$
$$= \left(1 + \frac{1}{n}\right)^n \to e \text{ as } n \to \infty$$

Since e > 1, the given series is divergent by the Ratio Test.

イロト イポト イヨト イヨ
Part (1): The idea is to compare the given series with a convergent geometric series. Since L < 1, we choose a number *r* such that L < r < 1. Since

the ratio $\left|\frac{a_{n+1}}{a_n}\right|$ will eventually be less than r that is, there exists an integer N such that

$$\left|\frac{a_{n+1}}{a_n}\right| < r$$
, whenever $n \ge N$

or equivalently,

 $|a_{n+1}| < |a_n|r$, whenever $n \ge N \rightarrow (1)$

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 5 20 / 26

Part (1): The idea is to compare the given series with a convergent geometric series. Since L < 1, we choose a number *r* such that L < r < 1. Since

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L,$$

the ratio $\left|\frac{a_{n+1}}{a_n}\right|$ will eventually be less than r that is, there exists an integer N such that

$$\left|\frac{a_{n+1}}{a_n}\right| < r$$
, whenever $n \ge N$

or equivalently,

 $|a_{n+1}| < |a_n|r$, whenever $n \ge N \rightarrow (1)$

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Part (1): The idea is to compare the given series with a convergent geometric series. Since L < 1, we choose a number *r* such that L < r < 1. Since

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L,$$

the ratio $\left|\frac{a_{n+1}}{a_n}\right|$ will eventually be less than r that is, there exists an integer N such that

or equivalently,

 $|a_{n+1}| < |a_n| r$, whenever $n \ge N \rightarrow (1)$

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 5 20 / 26

Part (1): The idea is to compare the given series with a convergent geometric series. Since L < 1, we choose a number *r* such that L < r < 1. Since

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L,$$

the ratio $\left|\frac{a_{n+1}}{a_n}\right|$ will eventually be less than r that is, there exists an integer N such that

$$\left|\frac{a_{n+1}}{a_n}\right| < r$$
, whenever $n \ge N$

or equivalently,

 $|a_{n+1}| < |a_n|r$, whenever $n \ge N \rightarrow (1)$

Dr. G.H.J. Lanel (USJP)

Part (1): The idea is to compare the given series with a convergent geometric series. Since L < 1, we choose a number *r* such that L < r < 1. Since

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L,$$

the ratio $\left|\frac{a_{n+1}}{a_n}\right|$ will eventually be less than r that is, there exists an integer N such that

$$\left|\frac{a_{n+1}}{a_n}\right| < r$$
, whenever $n \ge N$

or equivalently,

$$|a_{n+1}| < |a_n|r$$
, whenever $n \ge N \rightarrow (1)$

< ロ > < 同 > < 回 > < 回 >

Putting *n* successively equal to $N, N + 1, N + 2, \leftarrow$ in (1), we can obtain

 $\begin{aligned} |a_{N+1}| &< |a_N| \, r \\ |a_{N+2}| &< |a_{N+1}| \, r < |a_N| \, r^2 \\ |a_{N+3}| &< |a_{N+2}| \, r < |a_N| \, r^3 \end{aligned}$

and, in general

 $|a_{N+k}| < |a_N| r^k$, for all $k \ge 1 \rightarrow (2)$

Dr. G.H.J. Lanel (USJP)

Putting *n* successively equal to $N, N+1, N+2, \leftarrow$ in (1), we can obtain

 $\begin{aligned} |a_{N+1}| &< |a_N| \, r \\ |a_{N+2}| &< |a_{N+1}| \, r < |a_N| \, r^2 \\ |a_{N+3}| &< |a_{N+2}| \, r < |a_N| \, r^3 \end{aligned}$

and, in general

 $|a_{N+k}| < |a_N| r^k$, for all $k \ge 1 \rightarrow (2)$

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

্ৰ≣া> ≣ •∕) ৭০ Lecture 5 21 / 26

イロト 不得 トイヨト イヨト

Putting *n* successively equal to $N, N + 1, N + 2, \leftarrow$ in (1), we can obtain

$$egin{aligned} |a_{N+1}| &< |a_N| \, r \ |a_{N+2}| &< |a_{N+1}| \, r < |a_N| \, r^2 \ |a_{N+3}| &< |a_{N+2}| \, r < |a_N| \, r^3 \end{aligned}$$

and, in general

 $|a_{N+k}| < |a_N| r^k$, for all $k \ge 1 \rightarrow (2)$

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

イロト 不得 トイヨト イヨト 二日

Putting *n* successively equal to $N, N + 1, N + 2, \leftarrow$ in (1), we can obtain

$$egin{aligned} |a_{N+1}| &< |a_N| \, r \ |a_{N+2}| &< |a_{N+1}| \, r < |a_N| \, r^2 \ |a_{N+3}| &< |a_{N+2}| \, r < |a_N| \, r^3 \end{aligned}$$

and, in general

$$|a_{N+k}| < |a_N| r^k$$
, for all $k \ge 1 \rightarrow (2)$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Now the series

$$\sum_{k=1}^{\infty} |a_N| r^k = |a_N| r + |a_N| r^2 + |a_N| r^3 + \cdots$$

is convergent because it is a geometric series with 0 < r < 1. So the inequality (2) together with the Comparison Test, show that the series

$$\sum_{n=N+1}^{\infty} |a_n| = \sum_{k=1}^{\infty} |a_{N+k}| = |a_{N+1}| + |a_{N+2}| + |a_{N+3}| + \cdots$$

is also convergent. It follows that the series $\sum_{n=1}^{\infty} |a_n|$ is convergent. (*Recall that a finite number of terms doesn't affect convergence.*) Therefore $\sum a_n$ is absolutely convergent.

Now the series

$$\sum_{k=1}^{\infty} |a_N| r^k = |a_N| r + |a_N| r^2 + |a_N| r^3 + \cdots$$

is convergent because it is a geometric series with 0 < r < 1. So the inequality (2) together with the Comparison Test, show that the series

$$\sum_{n=N+1}^{\infty} |a_n| = \sum_{k=1}^{\infty} |a_{N+k}| = |a_{N+1}| + |a_{N+2}| + |a_{N+3}| + \cdots$$

is also convergent. It follows that the series $\sum_{n=1}^{\infty} |a_n|$ is convergent. (*Recall that a finite number of terms doesn't affect convergence.*) Therefore $\sum a_n$ is absolutely convergent.

Now the series

$$\sum_{k=1}^{\infty} |a_N| r^k = |a_N| r + |a_N| r^2 + |a_N| r^3 + \cdots$$

is convergent because it is a geometric series with 0 < r < 1. So the inequality (2) together with the Comparison Test, show that the series

$$\sum_{n=N+1}^{\infty} |a_n| = \sum_{k=1}^{\infty} |a_{N+k}| = |a_{N+1}| + |a_{N+2}| + |a_{N+3}| + \cdots$$

is also convergent. It follows that the series $\sum_{n=1}^{\infty} |a_n|$ is convergent. (*Recall that a finite number of terms doesn't affect convergence.*) Therefore $\sum a_n$ is absolutely convergent.

Now the series

$$\sum_{k=1}^{\infty} |a_N| r^k = |a_N| r + |a_N| r^2 + |a_N| r^3 + \cdots$$

is convergent because it is a geometric series with 0 < r < 1. So the inequality (2) together with the Comparison Test, show that the series

$$\sum_{n=N+1}^{\infty} |a_n| = \sum_{k=1}^{\infty} |a_{N+k}| = |a_{N+1}| + |a_{N+2}| + |a_{N+3}| + \cdots$$

is also convergent. It follows that the series $\sum_{n=1}^{\infty} |a_n|$ is convergent. (*Recall that a finite number of terms doesn't affect convergence.*) Therefore $\sum a_n$ is absolutely convergent.

Now the series

$$\sum_{k=1}^{\infty} |a_N| r^k = |a_N| r + |a_N| r^2 + |a_N| r^3 + \cdots$$

is convergent because it is a geometric series with 0 < r < 1. So the inequality (2) together with the Comparison Test, show that the series

$$\sum_{n=N+1}^{\infty} |a_n| = \sum_{k=1}^{\infty} |a_{N+k}| = |a_{N+1}| + |a_{N+2}| + |a_{N+3}| + \cdots$$

is also convergent. It follows that the series $\sum_{n=1}^{\infty} |a_n|$ is convergent. (*Recall that a finite number of terms doesn't affect convergence.*) Therefore $\sum a_n$ is absolutely convergent.

Dr. G.H.J. Lanel (USJP)

Lecture 5 22 / 26

Part (2): If

$$\left|\frac{a_{n+1}}{a_n}\right| \to L > 1 \text{ or } \left|\frac{a_{n+1}}{a_n}\right| \to \infty, \text{ then the ratio } \left|\frac{a_{n+1}}{a_n}\right|$$

will eventually be greater than 1; that is, there exists an integer N such that

$$\left|\frac{a_{n+1}}{a_n}\right| > 1$$
, whenever $n \ge N$

This means that $|a_{n+1}| > |a_n|$, whenever $n \ge N$ and so

 $\lim_{n o \infty} a_n
eq 0$

Therefore, $\sum a_n$ diverges by the Test for Divergence.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 5 23 / 26

Part (2): If

$$\left|\frac{a_{n+1}}{a_n}\right| \to L > 1 \text{ or } \left|\frac{a_{n+1}}{a_n}\right| \to \infty, \text{ then the ratio } \left|\frac{a_{n+1}}{a_n}\right|$$

will eventually be greater than 1; that is, there exists an integer N such that

 $\left|\frac{a_{n+1}}{a_n}\right| > 1$, whenever $n \ge N$

This means that $|a_{n+1}| > |a_n|$, whenever $n \ge N$ and so

 $\lim_{n o \infty} a_n
eq 0$

Therefore, $\sum a_n$ diverges by the Test for Divergence.

Part (2): If

$$\left|\frac{a_{n+1}}{a_n}\right| \to L > 1 \text{ or } \left|\frac{a_{n+1}}{a_n}\right| \to \infty, \text{ then the ratio } \left|\frac{a_{n+1}}{a_n}\right|$$

will eventually be greater than 1; that is, there exists an integer N such that

$$\left|\frac{a_{n+1}}{a_n}\right| > 1$$
, whenever $n \geq N$

This means that $|a_{n+1}| > |a_n|$, whenever $n \ge N$ and so

 $\lim_{n o \infty} a_n
eq 0$

Therefore, $\sum a_n$ diverges by the Test for Divergence.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 5 23 / 26

Part (2): If

$$\left|\frac{a_{n+1}}{a_n}\right| \to L > 1 \text{ or } \left|\frac{a_{n+1}}{a_n}\right| \to \infty, \text{ then the ratio } \left|\frac{a_{n+1}}{a_n}\right|$$

will eventually be greater than 1; that is, there exists an integer N such that

$$\left|\frac{a_{n+1}}{a_n}\right| > 1$$
, whenever $n \geq N$

This means that $|a_{n+1}| > |a_n|$, whenever $n \ge N$ and so

$$\lim_{n\to\infty}a_n\neq 0$$

Therefore, $\sum a_n$ diverges by the Test for Divergence.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 5 23 / 26

Part (2): If

$$\left|\frac{a_{n+1}}{a_n}\right| \to L > 1 \text{ or } \left|\frac{a_{n+1}}{a_n}\right| \to \infty, \text{ then the ratio } \left|\frac{a_{n+1}}{a_n}\right|$$

will eventually be greater than 1; that is, there exists an integer N such that

$$\left|\frac{a_{n+1}}{a_n}\right| > 1$$
, whenever $n \geq N$

This means that $|a_{n+1}| > |a_n|$, whenever $n \ge N$ and so

$$\lim_{n
ightarrow\infty}a_n
eq 0$$

Therefore, $\sum a_n$ diverges by the Test for Divergence.

• • • • • • • • • • •

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} = \frac{1}{(1+\frac{1}{n})^2} \to 1 \text{ as } n \to \infty$$

whereas for the divergent series $\sum \frac{1}{n}$ we have

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} = \frac{1}{1+\frac{1}{n}} \to 1 \text{ as } n \to \infty$$

Therefore, if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$, the series $\sum a_n$ might converge or it might diverge. In this case the Ratio Test fails and we must use some other test.

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} = \frac{1}{(1+\frac{1}{n})^2} \to 1 \text{ as } n \to \infty$$

whereas for the divergent series $\sum \frac{1}{n}$ we have

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} = \frac{1}{1+\frac{1}{n}} \to 1 \text{ as } n \to \infty$$

Therefore, if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$, the series $\sum a_n$ might converge or it might diverge. In this case the Ratio Test fails and we must use some other test.

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} = \frac{1}{(1+\frac{1}{n})^2} \to 1 \text{ as } n \to \infty$$

whereas for the divergent series $\sum \frac{1}{n}$ we have

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} = \frac{1}{1+\frac{1}{n}} \to 1 \text{ as } n \to \infty$$

Therefore, if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$, the series $\sum a_n$ might converge or it might diverge. In this case the Ratio Test fails and we must use some other test.

Dr. G.H.J. Lanel (USJP)

イロト 不得 トイヨト イヨト ヨー ろくの

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} = \frac{1}{(1+\frac{1}{n})^2} \to 1 \text{ as } n \to \infty$$

whereas for the divergent series $\sum \frac{1}{n}$ we have

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} = \frac{1}{1+\frac{1}{n}} \to 1 \text{ as } n \to \infty$$

Therefore, if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$, the series $\sum a_n$ might converge or it might diverge. In this case the Ratio Test fails and we must use some other test.

イロト 不得 トイヨト イヨト ヨー ろくの

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} = \frac{1}{(1+\frac{1}{n})^2} \to 1 \text{ as } n \to \infty$$

whereas for the divergent series $\sum \frac{1}{n}$ we have

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} = \frac{1}{1+\frac{1}{n}} \to 1 \text{ as } n \to \infty$$

Therefore, if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$, the series $\sum a_n$ might converge or it might diverge. In this case the Ratio Test fails and we must use some other test.

イロト 不得 トイヨト イヨト ヨー ろくの

The Root Test

- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (and therefore convergent).
- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$, or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, the Root Test is inconclusive.

The Root Test

- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (and therefore convergent).
- ② If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$, or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, the Root Test is inconclusive.

The Root Test

- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (and therefore convergent).
- ② If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$, or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- ③ If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, the Root Test is inconclusive.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Root Test

- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (and therefore convergent).
- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$, or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- ③ If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, the Root Test is inconclusive.

イロト 不得 トイヨト イヨト 二日

The Root Test

- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (and therefore convergent).
- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$, or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, the Root Test is inconclusive.

Test the convergence of the series
$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$$

Solution:

$$a_n = \left(\frac{2n+3}{3n+2}\right)^n$$

$$\sqrt[n]{|a_n|} = \frac{2n+3}{3n+2} = \frac{2+\frac{3}{n}}{3+\frac{2}{n}} \to \frac{2}{3} < 1 \text{ as } n \to \infty$$

Thus, the given series converges by the Root test.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

▲ E ▶ E • ○ Q ○ Lecture 5 26 / 26

Test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$

Solution:

$$a_n = \left(\frac{2n+3}{3n+2}\right)^n$$

$$\sqrt[n]{|a_n|} = \frac{2n+3}{3n+2} = \frac{2+\frac{3}{n}}{3+\frac{2}{n}} \to \frac{2}{3} < 1 \text{ as } n \to \infty$$

Thus, the given series converges by the Root test.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

< ≣ ► ≣ ৩৭৫ Lecture 5 26/26

Test the convergence of the series
$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$$

Solution:

$$a_n = \left(\frac{2n+3}{3n+2}\right)^n$$

$$\sqrt[n]{|a_n|} = \frac{2n+3}{3n+2} = \frac{2+\frac{3}{n}}{3+\frac{2}{n}} \to \frac{2}{3} < 1 \text{ as } n \to \infty$$

Thus, the given series converges by the Root test.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

▲ ■ ▶ ■ ∽ へ ⊂ Lecture 5 26 / 26

Test the convergence of the series
$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$$

Solution:

$$a_n = \left(\frac{2n+3}{3n+2}\right)^n$$

$$\sqrt[n]{|a_n|} = \frac{2n+3}{3n+2} = \frac{2+\frac{3}{n}}{3+\frac{2}{n}} \to \frac{2}{3} < 1 \text{ as } n \to \infty$$

Thus, the given series converges by the Root test.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

< ≣ ► ≣ ৩৭৫ Lecture 5 26/26

Test the convergence of the series
$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$$

Solution:

$$a_n = \left(\frac{2n+3}{3n+2}\right)^n$$

$$\sqrt[n]{|a_n|} = \frac{2n+3}{3n+2} = \frac{2+\frac{3}{n}}{3+\frac{2}{n}} \to \frac{2}{3} < 1 \text{ as } n \to \infty$$

Thus, the given series converges by the Root test.

Test the convergence of the series
$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$$

Solution:

$$a_n = \left(\frac{2n+3}{3n+2}\right)^n$$

$$\sqrt[n]{|a_n|} = \frac{2n+3}{3n+2} = \frac{2+\frac{3}{n}}{3+\frac{2}{n}} \to \frac{2}{3} < 1 \text{ as } n \to \infty$$

Thus, the given series converges by the Root test.