Introduction to programming in MATLAB

Dr. G.H.J. Lanel

Lecture 5

Outline

Outline

- An array refers to a set of numbers or objects that will follow a specific pattern usually in rows and columns
- Each element of a array has an index
- Elements can be directly accessed using the index of the element

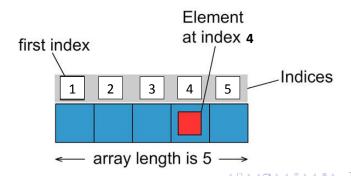
4/1

- An array refers to a set of numbers or objects that will follow a specific pattern usually in rows and columns
- Each element of a array has an index
- Elements can be directly accessed using the index of the element

4/1

- An array refers to a set of numbers or objects that will follow a specific pattern usually in rows and columns
- Each element of a array has an index
- Elements can be directly accessed using the index of the element

- An array refers to a set of numbers or objects that will follow a specific pattern usually in rows and columns
- Each element of a array has an index
- Elements can be directly accessed using the index of the element

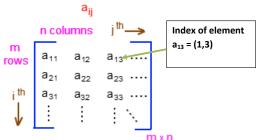


- An array of dimension 1 × n is called a row vector, whereas an array of dimension m × 1 is called a column vector.
- A matrix is a two-dimensional array consisting of m rows and n columns.
- Elements of a matrix can be accessed using a pair of indices (i,j) where i = 1, 2, ..., m and j = 1, 2, ..., n

- An array of dimension 1 × n is called a row vector, whereas an array of dimension m × 1 is called a column vector.
- A matrix is a two-dimensional array consisting of m rows and n columns.
- Elements of a matrix can be accessed using a pair of indices (i,j) where i = 1, 2, ..., m and j = 1, 2, ..., n

- An array of dimension 1 × n is called a row vector, whereas an array of dimension m × 1 is called a column vector.
- A matrix is a two-dimensional array consisting of m rows and n columns.
- Elements of a matrix can be accessed using a pair of indices (i,j) where i = 1, 2, ..., m and j = 1, 2, ..., n

- An array of dimension 1 × n is called a row vector, whereas an array of dimension m × 1 is called a column vector.
- A matrix is a two-dimensional array consisting of m rows and n columns.
- Elements of a matrix can be accessed using a pair of indices (i,j) where i = 1, 2, ..., m and j = 1, 2, ..., n



Basic Operations on Arrays

- Defining an array: vectors or matrices can be defined as follows
 - » A = [5 7 2 1] or A = [1,2,3,4] % Defining a row vector
 - » B = [3;6;2;9] % Defining a column vector
 - » C = [75; 89] % Defining 2 × 2 dimensional matrix
- Access elements in arrays :
 - » A(3) % 3 rd element of the vector A
 - » B(2,1) % index (2,1) element of the matrix B
 - » B(1,:) % All elements of the 1st row in matrix B
 - » B(:,2) % All elements of the 2nd column in matrix B
- Rows of a matrix can also be entered as vectors using the notation for creating vectors with constant spacing, or the linspace command.
 - » D = [1:2:11; 0:5:25; linspace(10,60,6); 67 32 4 58 9 18]

Basic Operations on Arrays

- Defining an array: vectors or matrices can be defined as follows
 - » A = [5 7 2 1] or A = [1,2,3,4] % Defining a row vector
 - » B = [3;6;2;9] % Defining a column vector
 - \sim C = [7 5; 8 9] % Defining 2 \times 2 dimensional matrix
- Access elements in arrays :
 - » A(3) % 3 rd element of the vector A
 - » B(2,1) % index (2,1) element of the matrix B
 - » B(1,:) % All elements of the 1st row in matrix B
 - » B(:,2) % All elements of the 2nd column in matrix B
- Rows of a matrix can also be entered as vectors using the notation for creating vectors with constant spacing, or the linspace command.
 - » D = [1:2:11; 0:5:25; linspace(10,60,6); 67 32 4 58 9 18]

Basic Operations on Arrays

- Defining an array: vectors or matrices can be defined as follows
 - » A = [5 7 2 1] or A = [1,2,3,4] % Defining a row vector
 - B = [3;6;2;9] % Defining a column vector
 - » C = [75; 89] % Defining 2×2 dimensional matrix
- Access elements in arrays :
 - » A(3) % 3 rd element of the vector A
 - » B(2,1) % index (2,1) element of the matrix B
 - » B(1,:) % All elements of the 1st row in matrix B
 - » B(:,2) % All elements of the 2nd column in matrix B
- Rows of a matrix can also be entered as vectors using the notation for creating vectors with constant spacing, or the linspace command.
 - » D = [1:2:11; 0:5:25; linspace(10,60,6); 67 32 4 58 9 18]

6/1

Deleting and inserting Elements :

- » B = [2 8 7 9 11 23 56 4 89 6];
- » B(4) = 21; % insert 21 as 4th element
- » B(3:6) = []; % remove elements from index 3 to 6
- » B
- Subset of an array: subset of a vector or matrix can be obtained as follows
 - » A = [1 2 3 5; 4 5 6 2; 7 8 9 4;6 7 3 1]
 - B = A(1:3,2:4) % subset of A

Deleting and inserting Elements :

```
» B = [2 8 7 9 11 23 56 4 89 6];
» B(4) = 21; % insert 21 as 4th element
» B(3:6) = []; % remove elements from index 3 to 6
» B
```

 Subset of an array: subset of a vector or matrix can be obtained as follows

```
» A = [1 2 3 5; 4 5 6 2; 7 8 9 4;6 7 3 1]

» B = A(1:3,2:4) % subset of A
```

Deleting and inserting Elements :

- » B = [2 8 7 9 11 23 56 4 89 6];
- \rightarrow B(4) = 21; % insert 21 as 4th element
- \rightarrow B(3:6) = []; % remove elements from index 3 to 6
- » B
- Subset of an array: subset of a vector or matrix can be obtained as follows
 - $A = \begin{bmatrix} 1 & 2 & 3 & 5 \end{bmatrix}$; 4 5 6 2; 7 8 9 4; 6 7 3 1
 - B = A(1:3,2:4) % subset of A

1	2	3	5
4	5	6	2
7	8	9	4
6	7	3	1

2 3 5 5 6 2

Α

R

There are some useful elementary matrices in MATLAB

Elementary matrices

eye(m,n)	Returns an m-by-n matrix with 1 on the main diagonal	
eye(n)	Returns an n-by-n square identity matrix	
zeros(m,n)	Returns an m-by-n matrix of zeros	
ones(m,n)	Returns an m-by-n matrix of ones	
diag(A)	Extracts the diagonal of matrix A	
rand(m,n)	Returns an m-by-n matrix of random numbers	

Sometimes we have to perform arithmetic operations between the elements of two arrays of the same size in an element-by-element manner.

8 / 1

There are some useful elementary matrices in MATLAB

Elementary matrices

eye(m,n)	Returns an m-by-n matrix with 1 on the main diagona	
eye(n)	Returns an n-by-n square identity matrix	
zeros(m,n)	Returns an m-by-n matrix of zeros	
ones(m,n)	Returns an m-by-n matrix of ones	
diag(A)	Extracts the diagonal of matrix A	
rand(m,n)	Returns an m-by-n matrix of random numbers	
	J	

Sometimes we have to perform arithmetic operations between the elements of two arrays of the same size in an element-by-element manner.

Summary of Array and Matrix operators

Summary of Afray and Matrix operators		
Character	Description	
+ or -	Array and Matrix addition or subtraction of arrays	
.*	Element-by-element multiplication of arrays	
./	Element-by-element right division : $a/b = a(i,j)/b(i,j)$	
. \	Element-by-element left division : $a b = b(i,j)/a(i,j)$	
. ^	Element-by-element exponentiation	
*	Matrix multiplication	
/	Matrix right divide : a/b = a*(b) ⁻¹	
\	Matrix left divide (equation solve) : $a b = (a)^{-1} * b$	
^	Matrix exponentiation	

8 / 1

Outline

Functions

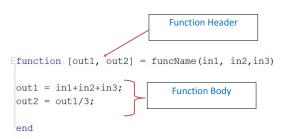
- Using functions to break down a large program to smaller and more manageable units is the heart of modular programming.
- In general, an m-file containing a Matlab function begins with the keyword function in the function header we specify the name of the function and the input and output parameters.

Functions

- Using functions to break down a large program to smaller and more manageable units is the heart of modular programming.
- In general, an m-file containing a Matlab function begins with the keyword function in the function header we specify the name of the function and the input and output parameters.

Functions

- Using functions to break down a large program to smaller and more manageable units is the heart of modular programming.
- In general, an m-file containing a Matlab function begins with the keyword function in the function header we specify the name of the function and the input and output parameters.



Functions can have multiple inputs and multiple outputs

Example of input and output arguments

function	C=FtoC(F)	One input argument and
	<pre>area=TrapArea(a,b,h) [h,d]=motion(v,angle)</pre>	one output argument Three inputs and one output Two inputs and two outputs

- function file must be saved by the function name
- Similarly as in Maple function can be called by function name

Functions can have multiple inputs and multiple outputs

Example of input and output arguments

function	C=FtoC(F)	One input argument and
	<pre>area=TrapArea(a,b,h) [h,d]=motion(v,angle)</pre>	one output argument Three inputs and one output Two inputs and two outputs

- function file must be saved by the function name
- Similarly as in Maple function can be called by function name

Functions can have multiple inputs and multiple outputs

Example of input and output arguments

function	C=FtoC(F)	One input argument and
	<pre>area=TrapArea(a,b,h) [h,d]=motion(v,angle)</pre>	one output argument Three inputs and one output Two inputs and two outputs

- function file must be saved by the function name
- Similarly as in Maple function can be called by function name

Sub Functions and Main Function

- Defining a main function and sub functions is important in divide and conquer approach
- Main function and sub functions can be implemented on separate M-files. But they should be saved in the same directory
- You can also implement main function and sub functions in the same M-file as follows

Sub Functions and Main Function

- Defining a main function and sub functions is important in divide and conquer approach
- Main function and sub functions can be implemented on separate M-files. But they should be saved in the same directory
- You can also implement main function and sub functions in the same M-file as follows

Sub Functions and Main Function

- Defining a main function and sub functions is important in divide and conquer approach
- Main function and sub functions can be implemented on separate M-files. But they should be saved in the same directory
- You can also implement main function and sub functions in the same M-file as follows

```
Efunction [sm,avg] = addavg(x,y) % Main Function
sm = addition(x,y);
avg = aver(x,y);
end

Efunction a = aver(x,y) % Sub Function 01
a = addition(x,y)/2;
end

Efunction s = addition(x,y) % Sub Function 02
s = x+y;
end
```

Local and Global variables

- The variables defined in a function are recognized only inside the function file.
- It is possible, however, to make a variable to be recognized in different function files. In other words to make the variables are global.
- Then they all share a single copy of that variable. Any change of value to that variable, in any function, is visible to all other functions

Local and Global variables

- The variables defined in a function are recognized only inside the function file.
- It is possible, however, to make a variable to be recognized in different function files. In other words to make the variables are global.
- Then they all share a single copy of that variable. Any change of value to that variable, in any function, is visible to all other functions

Local and Global variables

- The variables defined in a function are recognized only inside the function file.
- It is possible, however, to make a variable to be recognized in different function files. In other words to make the variables are global.
- Then they all share a single copy of that variable. Any change of value to that variable, in any function, is visible to all other functions

- Using inline function we can create a function without getting into edit window.

14 / 1

- Using inline function we can create a function without getting into edit window.
- Inline functions are created with the inline command in the following format.

Name = inline('math expression typed as a string')

Examples

```
» FA = inline('exp(x^2)/sart(x^2+5)');
```

- » FA
- » FA(2)
- $f = inline('exp(x^2)/sart(x^2 + y^2)', 'x', 'y');$
- » f
- » f(2.3)

- Using inline function we can create a function without getting into edit window.
- Inline functions are created with the inline command in the following format.

Name = inline('math expression typed as a string')

Examples

```
» FA = inline('exp(x^2)/sqrt(x^2 + 5)');

» FA

» FA(2)

» f = inline('exp(x^2)/sqrt(x^2 + y^2)',' x',' y')

» f
```

- Using inline function we can create a function without getting into edit window.
- Inline functions are created with the inline command in the following format.

Name = inline('math expression typed as a string')

Examples

```
» FA = inline('exp(x^2)/sqrt(x^2 + 5)');

» FA

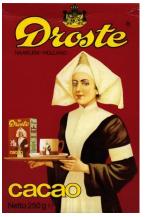
» FA(2)

» f = inline('exp(x^2)/sqrt(x^2 + y^2)',' x',' y');

» f

» f(2,3)
```

Recursion



Recursion is the process of repeating items in a self-similar way. The most common application of recursion is in mathematics and computer science, in which it refers to a method of defining functions in which the function being defined is applied within its own definition.

- An important class of functions are Recursive functions, function is said to be recursive if it calls itself in its own definition.
- Recursion is useful for computing the result of a function which can be expressed in terms of an integer (n) number of repetitive operations.
- For example, the sum of first n integers can be written as

$$S(n) = 1 + 2 + 3 + \dots + n \tag{1}$$

$$S(n) = S(n-1) + n \tag{2}$$

- The first equation shows a non-recursive way of calculating the sum of first (n) integers. This equation can be implemented using the familiar loops.
- The second equation defines a recursive formula for calculating the sum.

- An important class of functions are Recursive functions, function is said to be recursive if it calls itself in its own definition.
- Recursion is useful for computing the result of a function which can be expressed in terms of an integer (n) number of repetitive operations.
- For example, the sum of first n integers can be written as

$$S(n) = 1 + 2 + 3 + \dots + n \tag{1}$$

$$S(n) = S(n-1) + n \tag{2}$$

- The first equation shows a non-recursive way of calculating the sum of first (n) integers. This equation can be implemented using the familiar loops.
- The second equation defines a recursive formula for calculating the sum.

- An important class of functions are Recursive functions, function is said to be recursive if it calls itself in its own definition.
- Recursion is useful for computing the result of a function which can be expressed in terms of an integer (n) number of repetitive operations.
- For example, the sum of first n integers can be written as:

$$S(n) = 1 + 2 + 3 + ... + n$$
 (1)

$$S(n) = S(n-1) + n \tag{2}$$

- The first equation shows a non-recursive way of calculating the sum of first (n) integers. This equation can be implemented using the familiar loops.
- The second equation defines a recursive formula for calculating the sum.

16 / 1

- An important class of functions are Recursive functions, function is said to be recursive if it calls itself in its own definition.
- Recursion is useful for computing the result of a function which can be expressed in terms of an integer (n) number of repetitive operations.
- For example, the sum of first n integers can be written as:

$$S(n) = 1 + 2 + 3 + \dots + n \tag{1}$$

$$S(n) = S(n-1) + n \tag{2}$$

- The first equation shows a non-recursive way of calculating the sum of first (n) integers. This equation can be implemented using the familiar loops.
- The second equation defines a recursive formula for calculating the sum.

- An important class of functions are Recursive functions, function is said to be recursive if it calls itself in its own definition.
- Recursion is useful for computing the result of a function which can be expressed in terms of an integer (n) number of repetitive operations.
- For example, the sum of first n integers can be written as:

$$S(n) = 1 + 2 + 3 + \dots + n \tag{1}$$

$$S(n) = S(n-1) + n \tag{2}$$

- The first equation shows a non-recursive way of calculating the sum of first (n) integers. This equation can be implemented using the familiar loops.
- The second equation defines a recursive formula for calculating the sum.

Develop MATLAB function to calculate the sum of the first n integers using recursive formula

```
function [outsum] = sumrec(n)
if n<1
    error('Error : n must be positive\n');
elseif n==1
    outsum = 1;
else
    outsum = sumrec(n-1) + n; % recursive formula
end</pre>
```

Develop MATLAB function to calculate the sum of the first *n* integers using recursive formula

```
function [outsum] = sumrec(n)
if n<1
    error('Error : n must be positive\n');
elseif n==1
    outsum = 1;
else
    outsum = sumrec(n-1) + n; % recursive formula
end</pre>
```

```
Generating Fibonacci numbers : 0 1 1 2 3 5 8 13 21 ... using recursive formula F(n) = F(n-1) + F(n-2); F(0) = 0 and F(1) = 1 function [outfn] = fiborec(n)
```

```
Generating Fibonacci numbers: 0 1 1 2 3 5 8 13 21 ...
using recursive formula F(n) = F(n-1) + F(n-2); F(0) = 0 and F(1) = 1
   function [outfn] = fiborec(n)
  if n<1
      error('Error: n must be positive\n');
   elseif n==1
      outfn = 0:
   elseif n==2
      outfn = [0 \ 1];
   else
      fnm1 = fiborec(n-1);
      outfn = fnm1(n-1) + fnm1(n-2);
      outfn = [fnm1 outfn];
   end
```

- Every recursive function must have a terminating condition. If the terminating condition is missing, then the recursive function would keep calling itself an infinite number of times.
- Recursive definitions are some times more important in programming than iterative definition since it is easier to write and debug complex problems.
- However if recursive algorithm is not much shorter than the non-recursive one, you should always go for the non-recursive(iterative) one.
- A well written iteration can be far more effective and efficient in such cases.

- Every recursive function must have a terminating condition. If the terminating condition is missing, then the recursive function would keep calling itself an infinite number of times.
- Recursive definitions are some times more important in programming than iterative definition since it is easier to write and debug complex problems.
- However if recursive algorithm is not much shorter than the non-recursive one, you should always go for the non-recursive(iterative) one.
- A well written iteration can be far more effective and efficient in such cases.

19 / 1

- Every recursive function must have a terminating condition. If the terminating condition is missing, then the recursive function would keep calling itself an infinite number of times.
- Recursive definitions are some times more important in programming than iterative definition since it is easier to write and debug complex problems.
- However if recursive algorithm is not much shorter than the non-recursive one, you should always go for the non-recursive(iterative) one.
- A well written iteration can be far more effective and efficient in such cases.

19/1

- Every recursive function must have a terminating condition. If the terminating condition is missing, then the recursive function would keep calling itself an infinite number of times.
- Recursive definitions are some times more important in programming than iterative definition since it is easier to write and debug complex problems.
- However if recursive algorithm is not much shorter than the non-recursive one, you should always go for the non-recursive(iterative) one.
- A well written iteration can be far more effective and efficient in such cases.

End!

