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Applications Vector Fields

Vector Fields

A vector field F (x , y) = P(x , y)i + Q(x , y)j in a domain D can also be
expressed in the complex form

F (x , y) = P(x , y) + iQ(x , y)

Recall that div F = ∂P/∂x + ∂Q/∂y and curlF = (∂Q/∂x − ∂P/∂y)k .
If we require both of them are zeros, then

∂P
∂x = −∂Q

∂y and ∂P
∂y = ∂Q

∂x
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Applications Vector Fields
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Applications Vector Fields

Theorem 7: Proof

Proof

If u(x , y) and v(x , y) denote the real and imaginary parts of g(z), then
u = P and v = −Q. Then

∂u
∂x = −∂(−v)

∂y , ∂u
∂y = ∂(−v)

∂x ; that is,

∂u
∂x = ∂v

∂y , ∂u
∂y = −∂v

∂x

Equations in (2) are the Cauchy-Riemann equations for analyticity.
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Applications Vector Fields

Example 1

The vector field F (x , y) = (−kq/|z − z0|2)(z − z0) may be interpreted
as the electric field by a wire that is perpendicular to the z-plane at
z = z0 and carries a charge of q coulombs per unit length.

The corresponding complex function is

g(z) = −kq
|z−z0|2

(z − z0) = −kq
z−z0

Since g(z) is analytic for z 6= z0 , divF = 0, curlF = 0
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Applications Vector Fields

Example 2

The complex function g(z) = Az, A > 0, is analytic in the first quadrant
and therefore gives rise to the vector field

V (x , y) = g(z) = Ax − iAy

which satisfies div V=0,curl V=0
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Applications Potential Functions

Potential Functions

Suppose that F (x , y) is a vector field in a simply connected domain D
with div F = 0 and curl F = 0.

By Theorem, the analytic function g(z) = P(x , y)− iQ(x , y) has an
antiderivative

G(z) = φ(x , y) + iψ(x , y) −→ (4)

in D, which is called a complex potential for the vector filed F.
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Applications Potential Functions

Note that g(z) = G′(z) = ∂φ
∂x (x , y) + i ∂ψ∂x (x , y)

= ∂φ
∂x (x , y)− i ∂φ∂y (x , y)

and so ∂φ
∂x = P,∂φ∂y = Q (5)

Therefore F = ∆φ, and the harmonic function φ is called a (real)
potential function of F.
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Applications Potential Functions

Example 3

The potential φ in the half-plane x ≥ 0 satisfies the boundary
conditions φ(0, y) = 0 and φ(x ,0) = 1 for x ≥ 1.

See the following Figure (a). Determine a complex potential, the
equipotential lines, and the field F.
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Applications Potential Functions

Example 3: Cont...

Solution

We knew the analytic function z = sin(w) maps the strip 0 ≤ u ≤ π/2
in the w-plane to the region R in question. Therefore f (z) = sin−1z
maps R onto the strip, and the above Figure (b) shows the transferred
boundary conditions.

The simplified Dirichlet problem has the solution U(u, v) = (2/π)u, and
so φ(x , y) = U(sin−1z) = Re((2/π)sin−1z) is the potential function on
D, and G(z) = (2/π)sin−1z is a complex potential for F.
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Applications Potential Functions

Example 3: Cont...

Note that the equipotential lines φ = c are the images of the
equipotential lines U = c in the w-plane under the inverse mapping
z = sin(w). We found that the vertical lines u = a is mapped onto a
branch of the hyperbola

x2

sin2 a
− y2

cos2 a = 1
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Applications Potential Functions

Example 3: Cont...

Since the equipotential lines U = c, 0 < c < 1 is the vertical line
u = π/2c, it follows that the equipotential lines φ = c is the right branch
of the hyperbola

x2

sin2(πc/2)
− y2

cos2(πc/2) = 1

Since F = G′(z) and (d/dz) sin−1 z = 1/(1− z2)1/2,

then F = 2
π

1
π(1−z2)1/2 = 2

π
1

π(1−z2)1/2
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Applications Steady-State Fluid Flow

Steady-State Fluid Flow

The vector V (x , y) = P(x , y) + iQ(x , y) may also be expressed as the
velocity vector of a two-dimensional steady-state fluid flow at a point
(x , y) in a domain D. If div V = 0 and curl V = 0, V has a complex
velocity potential

G(z) = φ(x , y) + ψ(x , y)

that satisfies

G′(z) = V
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Applications Steady-State Fluid Flow

Here special importance is placed on the level curves ψ(x , y) = c. If
z(t) = x(t) + iy(t) is the path of a particle, then

dx
dt = P(x , y), dy

dt = Q(x , y) (6)

Hence

dy/dx = Q(x , y)/P(x , y) or

−Q(x , y)dx + P(x , y)dy = 0.

Dr. G.H.J. Lanel (USJP) Complex Variables Lecture 6 16 / 24



Applications Steady-State Fluid Flow

Since div V = 0 implies ∂(−Q)
∂y = ∂P

∂x

and by the Cauchy-Riemann equations

∂ψ
∂x = ∂φ

∂y = −Q and ∂ψ
∂y = ∂φ

∂x = P

and all solutions of (6) satisfy ψ(x , y) = c.

The function ψ(x , y) is called a stream function and the level curves
ψ(x , y) = c are streamlines for the flow.

Note that: Stream line is a line, which is everywhere tangent to the
velocity vector at a given instant. Stream Function is defined as the
scalar function of space and time such that its partial derivative with
respect to any direction gives the velocity component at right angles to
that direction
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Applications Steady-State Fluid Flow

Example 4

The uniform flow in the upper half-plane is defined by
V (x , y) = A(1,0), where A is a fixed positive constant. Note that
|V | = A, and so a particle in the fluid moves at a constant speed.

A complex potential for the vector field is G(z) = Az = Ax + iAy , and
so the streamlines are the horizontal lines Ay = c. See the following
Figure(a). Note that the boundary y = 0 of the region is itself
streamline.
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Applications Steady-State Fluid Flow

Example 5

The analytic function G(z) = z2 gives rise to the vector field

V(x , y) = G′(z) = (2x ,−2y)

in the first quadrant. Since z2 = x2 − y2 + i(2xy), the stream function
is ψ(x , y) = 2xy and the streamlines are the hyperbolas 2xy = c. See
the following Figure(b).
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Applications Steady-State Fluid Flow

Theorem 8
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Applications Steady-State Fluid Flow

Example 6

The analytic function G(z) = z + 1/z maps the region R in the upper
half-plane and outside the circle |z| = 1 onto the upper half-plane
v ≥ 0. The boundary of R is mapped onto the u-axis, and so
v = ψ(x , y) = y − y/(x2 + y2) is zero on the boundary of R.

The following Figure shows the streamlines. The velocity field is given
by

G′(z) = 1− 1/z2, and so

G′(reiθ) = 1− 1
r2 e2iθ
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Applications Steady-State Fluid Flow

Example 6: Cont...

It follows that V ∼= (1,0) for large values of r , and so the flow is
approximately uniform at large distance from the circle |z| = 1. The
resulting flow in R is called flow around a cylinder.
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Applications Steady-State Fluid Flow

Example 7

The analytic function f (w) = w + Ln(w) + 1 maps the upper half-plane
v ≥ 0 to the upper half-plane y ≥ 0, with the horizontal line y = π,
x ≤ 0, deleted.

See Example 4 in Section Schwarz-Christoffel Transformations. If
G(z) = f−1(z) = φ(x , y) + iψ(x , y), then G(z) maps R onto the upper
half-plane and maps the boundary of R onto the u-axis. Therefore
ψ(x , y) = 0 on the boundary of R.
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Applications Steady-State Fluid Flow

Example 7: Cont...

It is not easy to find an explicit formula for ψ(x , y). The streamlines are
the images of the horizontal lines v = c under z = f (w). If we write
w = t + ic, c > 0, then the streamlines can be

z = f (t + ic) = t + ic + Ln(t + ic) + 1, that is,

x = t + 1 + 1
2 loge(t2 + c2), y = c + Arg(t + ic)

See the following figure.
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