Building Graphs from Other Graphs

Dr.Jayantha Lanel

University of Sri Jayawardanapura
February 10, 2020

Outline

(1) Contracting Vertices and Edges
(2) Inducing and Permuting Subgraphs
(3) Graph Union and Graph Join
(4) Products of Graphs

(5) Line Graph

Contracting vertices

Contracting a pair of vertices, v_{1} and v_{2}, replaces them by one vertex v such that v is adjacent to anything v_{1} or v_{2} had been. It does not matter whether v_{1} and v_{2} are connected by an edge; if they are, then the edge disappears when v_{1} and v_{2} are contracted.

Contract Command in Maple

Contract

The contract command contracts the specified edge of a graph. By default, all the loops and multiple edges are removed. By setting multi=true, the loops and multiple edges are preserved and the output is a weighted graph.
To contract multiple edges in a graph, use the foldl command.

Maple command : contract

Inducing and Permuting Subgraphs

Induced Subgraphs

An induced subgraphs of a graph G is a subset of the vertices of G together with any edges whose endpoints are both in this subset. Deleting a vertex from a graph is identical to inducing a subgraph of the remaining $n-1$ vertices.

Permuting Subgraph

This is not induced a subgraph, but permutes the (vertices) embedding of the graph according to the given permutation.

Maple command : InducedSubgraph, PermuteVertices

Graph Union and Graph Join

Graph Union

The graph union operation takes two or more graphs and returns a graph that is formed by taking the union of the vertices and the edges of the graphs.

Remark: Maple does not support graph union in that sense but with restrictions.

Graph Join
The join of two graphs is their union, with the addition of all edges and vertices, spanning the different graph.

Maple command : GraphUnion, GraphJoin

Products of Graphs

The Product
The product $G_{1} \times G_{2}$ of two graphs has a vertex set define by cartisian product of the vertex sets of G_{1} and G_{2}. There is an edge between $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ if $u_{1}=u_{2}$ and v_{1} is adjacent to v_{2} in G_{2} or $v_{1}=v_{2}$ and u_{1} is adjacent to u_{2} in G_{1}.

Maple command : CartesianProduct

Line Graphs

Line Graph $L(G)$
The line graph $L(G)$ of a graph G has a vertex of $L(G)$ associated with each edge of G and an edge of $L(G)$ if and only if two edges of G share a common vertex.

Line graphs are a special type of intersection graph, where each vertex represents a set of size 2 and each edge connects two sets with a nonempty intersection.
Maple command : LineGraph

THE END

