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Graph Coloring

Example: Vertex coloring Example: Edge coloring

Example: Face coloring
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Graph Coloring

Definition
Let G = (V ,E) be a graph. A k -coloring of G is a function
C : V −→ {1,2, · · ·, k} such that C(u) 6= C(v) whenever uv ∈ E .

Remark:

1 A graph that has a k -coloring is said to be k -colorable.

2 Any graph that is k -colorable is also k ′-colorable for all k ′ > k .
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Chromatic number (χ(G))

The minimum value of k for which there exists a k -coloring of G is
called the chromatic number of G, and it is denoted by (χ(G)).

Thus G is k -colorable if and only if⇐⇒ χ(G)) ≤ k .

Question: Prove that χ(G)) = 4
for the following graph.

Proof: Follows...
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Chromatic number (χ(G))

Theorem
A graph is bipartite if and only if its chromatic number is at most 2.

Proof
Homework.

Theorem
If Kn is a subgraph of a graph G, then χ(G)) ≥ n.

Proof
Proof: Follows...
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Chromatic number (χ(G))

Theorem
The chromatic number of the n-cycle is given by,

χ(n) =

{
2 if n is even
3 if n is odd
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Chromatic number (χ(G))

Some examples of known chromatic numbers are :
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Four color theorem

Theorem
If G is a planar graph, then χ(n) ≤ 4
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Coloring Algorithm
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Coloring Algorithm

Finding an optimal coloring is exhaustive search.

Start with one node, give it a color, assign non-conflicting colors to
its neighbors, and so on.

Try it with two colors, if you get no result, then try three, and so on.

They are a lot of heuristic algorithms (not proven mathematically it
is the best) that try to improve on that both by reducing space and
time
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Coloring Algorithm

Greedy Algorithm

Algorithm GreedyColor(G)

L := sort(V); c := sort(colors)

for v ∈ V do

choose smallest ci not used by colored neighbors

end for
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Coloring Algorithm

Let us come back to the map coloring problem

 

and try to prove the following (simpler) result

Assignment #3: Every planar graph can be colored with 6 colors.

Show that e ≤ 3n - 6,

Show then that for planar graphs average(d(v)) ≤ 6 - 12 / n,

Finally prove that there exists a v such that d(v) ≤ 5,

Now use induction to prove the proposition (remove nodes).
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