Graph Theory and Its Applications

Dr. G.H.J. Lanel

Lecture 7

Outline

Outline

(1) Graph Coloring

(2) Chromatic number $(\chi(G))$

3 Four color theorem

4 Coloring Algorithm

Example: Vertex coloring

Example: Edge coloring

Example: Face coloring

Definition
Let $G=(V, E)$ be a graph. A k-coloring of G is a function $C: V \longrightarrow\{1,2, \cdots, k\}$ such that $C(u) \neq C(v)$ whenever $u v \in E$.

Remark:
(1) A graph that has a k-coloring is said to be k-colorable.
(2) Any graph that is k-colorable is also k^{\prime}-colorable for all $k^{\prime}>k$.

Outline

(1) Graph Coloring

(2) Chromatic number $(\chi(G))$

(3) Four color theorem

4 Coloring Algorithm

The minimum value of k for which there exists a k-coloring of G is called the chromatic number of G, and it is denoted by $(\chi(G))$.

Thus G is k-colorable if and only if $\Longleftrightarrow \chi(G)) \leq k$.

Question: Prove that $\chi(G))=4$ for the following graph.

Proof: Follows...

Theorem
A graph is bipartite if and only if its chromatic number is at most 2.
Proof
Homework.

Theorem
If K_{n} is a subgraph of a graph G, then $\left.\chi(G)\right) \geq n$.
Proof
Proof: Follows...

Theorem

The chromatic number of the n-cycle is given by,

$$
\chi(n)= \begin{cases}2 & \text { if } n \text { is even } \\ 3 & \text { if } n \text { is odd }\end{cases}
$$

Some examples of known chromatic numbers are :

Bipartite graph
$\chi(G)=2$

Even cycle $\chi(G)=2$

Odd cycle
$\chi(G)=3$

Clique
$\chi\left(K_{n}\right)=n$

Petersen Graph
$\chi(G)=3$

Planar graph
$\chi(G)=4$

Outline

(1) Graph Coloring

2 Chromatic number $(\chi(G))$

(3) Four color theorem

4 Coloring Algorithm

Dr. G.H.J. Lanel (USJP)

Theorem

If G is a planar graph, then $\chi(n) \leq 4$

Outline

(1) Graph Coloring

(2) Chromatic number $(\chi(G))$

(3) Four color theorem

4 Coloring Algorithm

Dr. G.H.J. Lanel (USJP)

- Finding an optimal coloring is exhaustive search.

Start with one node, give it a color, assign non-conflicting colors to its neighbors, and so on.

- Finding an optimal coloring is exhaustive search.
- Start with one node, give it a color, assign non-conflicting colors to its neighbors, and so on.

Try it with two colors, if you get no result, then try three, and so on. They are a lot of heuristic algorithms (not proven mathematically it is the best) that try to improve on that both by reducing space and time

- Finding an optimal coloring is exhaustive search.
- Start with one node, give it a color, assign non-conflicting colors to its neighbors, and so on.
- Try it with two colors, if you get no result, then try three, and so on.
- Finding an optimal coloring is exhaustive search.
- Start with one node, give it a color, assign non-conflicting colors to its neighbors, and so on.
- Try it with two colors, if you get no result, then try three, and so on.
- They are a lot of heuristic algorithms (not proven mathematically it is the best) that try to improve on that both by reducing space and time

Greedy Algorithm

Algorithm GreedyColor(G)
L :=sort(V); c :=sort(colors)
for $v \in V$ do
choose smallest c_{i} not used by colored neighbors
end for

Let us come back to the map coloring problem

and try to prove the following (simpler) result
Assignment \#3: Every planar graph can be colored with 6 colors.
Show that $e \leq 3 n-6$,
Show then that for planar graphs average $(d(v)) \leq 6-12 / n$,
Finally prove that there exists a v such that $d(v) \leq 5$,
Now use induction to prove the proposition (remove nodes).

