MAT 122 2.0 Calculus

Dr. G.H.J. Lanel

Lecture 8

Outline

Outline

Infinite Limits

Consider the following example:

Find $\lim _{x \rightarrow 0} 1 / x^{2}$ if it exists.

Solution:

As x becomes close to $0, x^{2}$ also becomes close to 0 , and $1 / x^{2}$ becomes very large.

Infinite Limits

Consider the following example:

Find $\lim _{x \rightarrow 0} 1 / x^{2}$ if it exists.

Infinite Limits

Consider the following example:
Find $\lim _{x \rightarrow 0} 1 / x^{2}$ if it exists.

Solution :

As x becomes close to $0, x^{2}$ also becomes close to 0 , and $1 / x^{2}$ becomes very large.

Values of $f(x)$ can be made arbitrarily large by taking x close enough to 0 . Thus, the values of $f(x)$ do not approach a number, so $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ does not exist.

Definition

Let f be a function defined on both sides of a, except possibly at a itself. Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that the values of $f(x)$ can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a.

A similar definition can be given for the limit of $f(x)$, as x approaches a in negative infinity.

Similar definitions can be given for the one-sided infinite limits.

$$
\begin{gathered}
\lim _{x \rightarrow a^{-}} f(x)=\infty \\
\lim _{x \rightarrow a^{-}} f(x)=-\infty \\
\lim _{x \rightarrow a^{+}} f(x)=\infty \\
\lim _{x \rightarrow a^{+}} f(x)=-\infty
\end{gathered}
$$

Definition

The line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following statements is true:
$\lim _{x \rightarrow a} f(x)=\infty \lim _{x \rightarrow a} f(x)=-\infty \lim _{x \rightarrow a^{-}} f(x)=\infty$
$\lim _{x \rightarrow a^{-}} f(x)=-\infty \lim _{x \rightarrow a^{+}} f(x)=\infty \lim _{x \rightarrow a^{+}} f(x)=-\infty$

For instance, the y-axis is a vertical asymptote of the curve $y=1 / x^{2}$ because $\lim _{x \rightarrow 0}\left(1 / x^{2}\right)=\infty$

Example:

Find the vertical asymptotes of $f(x)=\tan x$

Example:

Find the vertical asymptotes of $f(x)=\tan x$

Solution:

There are potential vertical asymptotes where $\cos x=0$
\square reasoning shows that the lines $x=(2 n+1) \pi / 2$, where n is an integer, are all vertical asymptotes of $f(x)=\tan x$

Example:

Find the vertical asymptotes of $f(x)=\tan x$

Solution:

\square reasoning shows that the lines $x=(2 n+1) \pi / 2$, where n is an integer, are all vertical asymptotes of $f(x)=\tan x$

Example:

Find the vertical asymptotes of $f(x)=\tan x$

Solution:

$$
\tan x=\frac{\sin x}{\cos x}
$$

- There are potential vertical asymptotes where $\cos x=0$
- $\cos x \rightarrow 0^{+}$as $x \rightarrow(\pi / 2)^{-}$and $\cos x \rightarrow 0^{-}$as $x \rightarrow(\pi / 2)^{+}$
- When $\sin x$ is positive when x is near $\pi / 2$, we have $\lim _{x \rightarrow(\pi / 2)^{-}}(\tan x)=\infty$ and $\lim _{x \rightarrow(\pi / 2)^{+}}(\tan x)=-\infty$
- This shows that the line $\pi / 2$ is a vertical asymptote. Similar reasoning shows that the lines $x=(2 n+1) \pi / 2$, where n is an integer, are all vertical asymptotes of $f(x)=\tan x$.

Example: Another example of a function whose graph has a vertical asymptote is the natural logarithmic function $y=\ln x$

Solution:

Example: Another example of a function whose graph has a vertical asymptote is the natural logarithmic function $y=\ln x$

The line $x=0$ is a vertical asymptote.

Example: Another example of a function whose graph has a vertical asymptote is the natural logarithmic function $y=\ln x$

Solution:

The line $x=0$ is a vertical asymptote

Example: Another example of a function whose graph has a vertical asymptote is the natural logarithmic function $y=\ln x$

Solution:

$$
\lim _{x \rightarrow 0^{+}}(\ln x)=-\infty
$$

The line $x=0$ is a vertical asymptote.

Outline

Definition

Let f be a function defined on some open interval that contains the number a, except possibly at itself. Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

Definition

Let f be a function defined on some open interval that contains the number a, except possibly at itself. Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that for every positive number M there is a positive number δ such that

$$
f(x)>\text { Mwhenever } 0<x-a<\delta
$$

Examples

Example:

Use $\epsilon-\delta$ definition to prove that $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$

Examples

Example:

Use $\epsilon-\delta$ definition to prove that $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$

Solution:

Guessing a value for δ. Given $M>0$, we want to find $\delta>0$ such that

Examples

Example:

Use $\epsilon-\delta$ definition to prove that $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$

Solution:

1. Guessing a value for δ. Given $M>0$, we want to find $\delta>0$ such that

$$
\frac{1}{x^{2}} \text { whenever } 0<x-0<\delta
$$

that is,

$$
\begin{aligned}
& x^{2}<\frac{1}{M} \text { whenever } 0<x<\delta \\
& x<\frac{1}{\sqrt{M}} \text { whenever } 0<x<\delta
\end{aligned}
$$

This suggests that we should take $\delta=\frac{1}{\sqrt{M}}$

Showing that this δ works. If $M>0$ is given , let $\delta=1 / \sqrt{M}$. If $0<x-0<\delta$ then,

$$
\begin{aligned}
& x<\delta \Rightarrow x^{2}<\delta^{2} \\
& \Rightarrow \frac{1}{x^{2}}>\frac{1}{\delta^{2}}=M
\end{aligned}
$$

Thus,

$$
\frac{1}{x^{2}}>M w h e n e v e r 0<x-0<\delta
$$

Therefore by definition $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$

Outline

A function f is continuous at a point $x=a$ if the following are true:

(1) $f(a)$ is defined

A function f is continuous at a point $x=a$ if the following are true:
(1) $f(a)$ is defined
(2) $\lim _{x \rightarrow a} f(x)$ exists

A function f is continuous at a point $x=a$ if the following are true:
(1) $f(a)$ is defined
(2) $\lim _{x \rightarrow a} f(x)$ exists

A function f is continuous at a point $x=a$ if the following are true:
(1) $f(a)$ is defined
(2) $\lim _{x \rightarrow a} f(x)$ exists
(3) $\lim _{x \rightarrow a} f(x)=f(a)$

A function f is continuous at a point $x=a$ if the following are true:
(1) $f(a)$ is defined
(2) $\lim _{x \rightarrow a} f(x)$ exists
(3) $\lim _{x \rightarrow a} f(x)=f(a)$

Eg. 01

Where are each of the following functions discontinuous?

Eg. 01

Where are each of the following functions discontinuous?
(a)

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

Eg. 01

Where are each of the following functions discontinuous?
(a)

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

(2)

$$
f(x)= \begin{cases}\frac{1}{x^{2}}, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}
$$

Eg. 01

Where are each of the following functions discontinuous?
(1)

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

(2)

$$
f(x)= \begin{cases}\frac{1}{x^{2}}, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}
$$

A function $f(x)$ is defined as follows :

Eg. 01

Where are each of the following functions discontinuous?
(a)

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

(2)

$$
f(x)= \begin{cases}\frac{1}{x^{2}}, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}
$$

A function $f(x)$ is defined as follows :

$$
f(x)= \begin{cases}3+2 x, & \text { if }-\frac{3}{2}<x \leq 0 \\ 3-2 x, & \text { if } 0<x \leq \frac{3}{2} \\ -3-2 x, & \text { if } x>\frac{3}{2}\end{cases}
$$

Eg. 01

Where are each of the following functions discontinuous?
(a)

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

(2)

$$
f(x)= \begin{cases}\frac{1}{x^{2}}, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}
$$

A function $f(x)$ is defined as follows :

$$
f(x)= \begin{cases}3+2 x, & \text { if }-\frac{3}{2}<x \leq 0 \\ 3-2 x, & \text { if } 0<x \leq \frac{3}{2} \\ -3-2 x, & \text { if } x>\frac{3}{2}\end{cases}
$$

Show that $f(x)$ is continuous at $x=0$ and is discontinuous at $x=\frac{3}{2}$.

Definition

A function f is continuous from the right at the number a if and f is continuous from the left at a if

Definition

A function f is continuous from the right at the number a if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

Definition

A function f is continuous from the right at the number a if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

and f is continuous from the left at a if

Definition

A function f is continuous from the right at the number a if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

and f is continuous from the left at a if

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

Definition

A function f is continuous on an interval if it is continuous at every number in the interval.

Note that if f is defined only on one side of an endpoint of the interval, that means the function continuous from the right or continuous from the left.

Eg. 02

Show that the function $f(x)=1-\sqrt{1-x^{2}}$ is continuous on the interval [-1,1].

Eg. 02

Show that the function $f(x)=1-\sqrt{1-x^{2}}$ is continuous on the interval [-1,1].

Sol: If $-1<a<1$, then using the limit laws, we have

Eg. 02

Show that the function $f(x)=1-\sqrt{1-x^{2}}$ is continuous on the interval [-1,1].

Sol: If $-1<a<1$, then using the limit laws, we have

Eg. 02

Show that the function $f(x)=1-\sqrt{1-x^{2}}$ is continuous on the interval [-1,1].

Sol: If $-1<a<1$, then using the limit laws, we have

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}\left(1-\sqrt{1-x^{2}}\right) \\
& =1-\lim _{x \rightarrow a} \sqrt{1-x^{2}} \\
& =1-\sqrt{\lim _{x \rightarrow a}\left(1-x^{2}\right)} \\
& =1-\sqrt{1-a^{2}} \\
& =f(a)
\end{aligned}
$$

Eg. 02

Show that the function $f(x)=1-\sqrt{1-x^{2}}$ is continuous on the interval [-1,1].

Sol: If $-1<a<1$, then using the limit laws, we have

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}\left(1-\sqrt{1-x^{2}}\right) \\
& =1-\lim _{x \rightarrow a} \sqrt{1-x^{2}} \\
& =1-\sqrt{\lim _{x \rightarrow a}\left(1-x^{2}\right)} \\
& =1-\sqrt{1-a^{2}} \\
& =f(a)
\end{aligned}
$$

Eg. 02

Show that the function $f(x)=1-\sqrt{1-x^{2}}$ is continuous on the interval [-1,1].

Sol: If $-1<a<1$, then using the limit laws, we have

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}\left(1-\sqrt{1-x^{2}}\right) \\
& =1-\lim _{x \rightarrow a} \sqrt{1-x^{2}} \\
& =1-\sqrt{\lim _{x \rightarrow a}\left(1-x^{2}\right)} \\
& =1-\sqrt{1-a^{2}} \\
& =f(a)
\end{aligned}
$$

Eg. 02

Show that the function $f(x)=1-\sqrt{1-x^{2}}$ is continuous on the interval [-1,1].

Sol: If $-1<a<1$, then using the limit laws, we have

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}\left(1-\sqrt{1-x^{2}}\right) \\
& =1-\lim _{x \rightarrow a} \sqrt{1-x^{2}} \\
& =1-\sqrt{\lim _{x \rightarrow a}\left(1-x^{2}\right)} \\
& =1-\sqrt{1-a^{2}} \\
& =f(a)
\end{aligned}
$$

Eg. 02

Show that the function $f(x)=1-\sqrt{1-x^{2}}$ is continuous on the interval [-1,1].

Sol: If $-1<a<1$, then using the limit laws, we have

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}\left(1-\sqrt{1-x^{2}}\right) \\
& =1-\lim _{x \rightarrow a} \sqrt{1-x^{2}} \\
& =1-\sqrt{\lim _{x \rightarrow a}\left(1-x^{2}\right)} \\
& =1-\sqrt{1-a^{2}} \\
& =f(a)
\end{aligned}
$$

- Thus, by first definition, f is continuous at a if $-1<a<1$. Similar calculations show that,
- Thus, by first definition, f is continuous at a if $-1<a<1$. Similar calculations show that,

$$
\lim _{x \rightarrow-1^{+}} f(x)=1=f(-1) \text { and } \lim _{x \rightarrow 1^{-}} f(x)=1=f(1)
$$

- Thus, by first definition, f is continuous at a if $-1<a<1$. Similar calculations show that,

$$
\lim _{x \rightarrow-1^{+}} f(x)=1=f(-1) \text { and } \lim _{x \rightarrow 1^{-}} f(x)=1=f(1)
$$

- So f is continuous from the right at -1 and continuous from the left at 1 .
- Thus, by first definition, f is continuous at a if $-1<a<1$. Similar calculations show that,

$$
\lim _{x \rightarrow-1^{+}} f(x)=1=f(-1) \text { and } \lim _{x \rightarrow 1^{-}} f(x)=1=f(1)
$$

- So f is continuous from the right at -1 and continuous from the left at 1.
- Therefore, according to second definition, f is continuous on $[-1,1]$.

Theorem

If f and g are continuous at a and c is constant, then the following functions are also continuous at a:

Theorem

If f and g are continuous at a and c is constant, then the following functions are also continuous at a:

Theorem

If f and g are continuous at a and c is constant, then the following functions are also continuous at a:

1) $f+g$
2) $f-g$
3) $c f$
4) fg
5) $\frac{f}{g}$, if $g(a) \neq 0$

Proof :

Each of the five parts of this theorem follows from the corresponding limit law. For instance, we give the proof of part 1). Since f and g are

 continuous at a, we have
Proof :

Each of the five parts of this theorem follows from the corresponding limit law. For instance, we give the proof of part 1). Since f and g are

 continuous at a, we have
$\lim _{x \rightarrow a} f(x)=f(a)$ and $\lim _{x \rightarrow a} g(x)=g(a)$

$$
\begin{aligned}
& =\lim _{x \rightarrow a}[f(x)+g(x)] \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
& =f(a)+g(a) \\
& =(f+g)(a)
\end{aligned}
$$

This shows that $f+g$ is continuous at a.

Proof :

Each of the five parts of this theorem follows from the corresponding limit law. For instance, we give the proof of part 1). Since f and g are continuous at a, we have

Proof :

Each of the five parts of this theorem follows from the corresponding limit law. For instance, we give the proof of part 1). Since f and g are continuous at a, we have

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x)=f(a) \text { and } \lim _{x \rightarrow a} g(x)=g(a) & \\
& =\lim _{x \rightarrow a}[f(x)+g(x)] \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
& =f(a)+g(a) \\
& =(f+g)(a)
\end{aligned}
$$

This shows that $f+g$ is continuous at a.

Proof :

Each of the five parts of this theorem follows from the corresponding limit law. For instance, we give the proof of part 1). Since f and g are continuous at a, we have

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x)=f(a) \text { and } \lim _{x \rightarrow a} g(x)=g(a) & \\
\therefore \lim _{x \rightarrow a}(f+g)(x) & =\lim _{x \rightarrow a}[f(x)+g(x)] \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
& =f(a)+g(a) \\
& =(f+g)(a)
\end{aligned}
$$

This shows that $f+g$ is continuous at a.

Proof :

Each of the five parts of this theorem follows from the corresponding limit law. For instance, we give the proof of part 1). Since f and g are continuous at a, we have

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x)=f(a) \text { and } \lim _{x \rightarrow a} g(x)=g(a) & \\
\therefore \lim _{x \rightarrow a}(f+g)(x) & =\lim _{x \rightarrow a}[f(x)+g(x)] \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
& =f(a)+g(a) \\
& =(f+g)(a)
\end{aligned}
$$

This shows that $f+g$ is continuous at a.

Proof :

Each of the five parts of this theorem follows from the corresponding limit law. For instance, we give the proof of part 1). Since f and g are continuous at a, we have

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x)=f(a) \text { and } \lim _{x \rightarrow a} g(x)=g(a) & \\
\therefore \lim _{x \rightarrow a}(f+g)(x) & =\lim _{x \rightarrow a}[f(x)+g(x)] \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
& =f(a)+g(a) \\
& =(f+g)(a)
\end{aligned}
$$

This shows that $f+g$ is continuous at a.

Proof :

Each of the five parts of this theorem follows from the corresponding limit law. For instance, we give the proof of part 1). Since f and g are continuous at a, we have

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x)=f(a) \text { and } \lim _{x \rightarrow a} g(x)=g(a) & \\
\therefore \lim _{x \rightarrow a}(f+g)(x) & =\lim _{x \rightarrow a}[f(x)+g(x)] \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
& =f(a)+g(a) \\
& =(f+g)(a)
\end{aligned}
$$

This shows that $f+g$ is continuous at a.

Proof :

Each of the five parts of this theorem follows from the corresponding limit law. For instance, we give the proof of part 1). Since f and g are continuous at a, we have

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x)=f(a) \text { and } \lim _{x \rightarrow a} g(x)=g(a) & \\
\therefore \lim _{x \rightarrow a}(f+g)(x) & =\lim _{x \rightarrow a}[f(x)+g(x)] \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
& =f(a)+g(a) \\
& =(f+g)(a)
\end{aligned}
$$

This shows that $f+g$ is continuous at a.

Theorem

(1) Any polynomial is continuous everywhere, that is, it is continuous on $\mathbb{R}=(-\infty, \infty)$.
(2) Anv rational function is continuous wherever it is defined; that is, it is continuous on its domain.

Theorem

(1) Any polynomial is continuous everywhere, that is, it is continuous on $\mathbb{R}=(-\infty, \infty)$.

Theorem

(1) Any polynomial is continuous everywhere, that is, it is continuous on $\mathbb{R}=(-\infty, \infty)$.
(2) Any rational function is continuous wherever it is defined; that is, it is continuous on its domain.

Proof:

A polynomial is the function of the form

and

Proof:

Proof of Part (1):

A polynomial is the function of the form

We know that

Proof:

Proof of Part (1):

A polynomial is the function of the form

$$
\begin{aligned}
& P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0} \\
& \text { where } c_{0}, c_{1}, \cdots, c_{n} \text { are constants. }
\end{aligned}
$$

$$
\lim _{x \rightarrow a} c_{0}=c_{0}
$$

and

$$
\lim _{x \rightarrow a} x^{m}=a^{m} \quad m=1,2, \cdots, n
$$

Proof:

Proof of Part (1):

A polynomial is the function of the form

$$
\begin{aligned}
& P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0} \\
& \text { where } c_{0}, c_{1}, \cdots, c_{n} \text { are constants. }
\end{aligned}
$$

We know that

$$
\lim _{x \rightarrow a} c_{0}=c_{0}
$$

and

$$
\lim _{x \rightarrow a} x^{m}=a^{m} \quad m=1,2, \cdots, n
$$

Proof:

Proof of Part (1):

A polynomial is the function of the form

$$
\begin{aligned}
& P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0} \\
& \text { where } c_{0}, c_{1}, \cdots, c_{n} \text { are constants. }
\end{aligned}
$$

We know that

$$
\lim _{x \rightarrow a} c_{0}=c_{0}
$$

and

$$
\lim _{x \rightarrow a} x^{m}=a^{m} \quad m=1,2, \cdots, n
$$

Proof:

Proof of Part (1):

A polynomial is the function of the form

$$
\begin{aligned}
& P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0} \\
& \text { where } c_{0}, c_{1}, \cdots, c_{n} \text { are constants. }
\end{aligned}
$$

We know that

$$
\lim _{x \rightarrow a} c_{0}=c_{0}
$$

and

$$
\lim _{x \rightarrow a} x^{m}=a^{m} \quad m=1,2, \cdots, n
$$

Proof Contd..

- This equation is precisely the statement that the function $f(x)=x^{n}$ is a continuous function.
- Thus by part 3) of previous theorem, the function $g(x)=c x^{n}$ is continuous.
- Since P is a sum of functions of the form and a constant function, it follows from part 1) of previous theorem that P is continuous.

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

$$
f(x)=\frac{P(x)}{Q(x)}
$$

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

$$
f(x)=\frac{P(x)}{Q(x)}
$$

- where P and Q are polynomials.
- We know from part (a) that P and Q are continuous everywhere.

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

$$
f(x)=\frac{P(x)}{Q(x)}
$$

- where P and Q are polynomials.
- The domain of f is $D=\{x \in \mathbb{R} \mid Q(x) \neq 0\}$.

We know from part (a) that P and Q are continuous everywhere.
Thus, by part 5) of previous theorem, f is continuous at every
number in D.

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

$$
f(x)=\frac{P(x)}{Q(x)}
$$

- where P and Q are polynomials.
- The domain of f is $D=\{x \in \mathbb{R} \mid Q(x) \neq 0\}$.
- We know from part (a) that P and Q are continuous everywhere.
number in D.

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

$$
f(x)=\frac{P(x)}{Q(x)}
$$

- where P and Q are polynomials.
- The domain of f is $D=\{x \in \mathbb{R} \mid Q(x) \neq 0\}$.
- We know from part (a) that P and Q are continuous everywhere.
- Thus, by part 5) of previous theorem, f is continuous at every number in D.

Theorem

The Intermediate Value Theorem

Suppose that f is continuous on the closed interval [a,b] and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. Then there exists a number 0 in (a, b) such that $f(c)=N$

Theorem

The Intermediate Value Theorem

Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that $f(c)=N$.

Theorem

The Intermediate Value Theorem

Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that $f(c)=N$.

Eg.
Show that there is a root of the equation $4 x^{3}-6 x^{2}+3 x-2=0$, between 1 and 2.

Eg.

Show that there is a root of the equation $4 x^{3}-6 x^{2}+3 x-2=0$, between 1 and 2.

Eg.

Show that there is a root of the equation $4 x^{3}-6 x^{2}+3 x-2=0$, between 1 and 2 .

Sol:

Eg.

Show that there is a root of the equation $4 x^{3}-6 x^{2}+3 x-2=0$, between 1 and 2.

Sol:

Let $f(x)=4 x^{3}-6 x^{2}+3 x-2=0$. Suppose number c is the root such that $f(c)=0$.

Eg.

Show that there is a root of the equation $4 x^{3}-6 x^{2}+3 x-2=0$, between 1 and 2.

Sol:

Let $f(x)=4 x^{3}-6 x^{2}+3 x-2=0$. Suppose number c is the root such that $f(c)=0$.
We take $a=1, b=2$ and $N=0$ in Theorem, we have

Eg.

Show that there is a root of the equation $4 x^{3}-6 x^{2}+3 x-2=0$, between 1 and 2.

Sol:

Let $f(x)=4 x^{3}-6 x^{2}+3 x-2=0$. Suppose number c is the root such that $f(c)=0$.
We take $a=1, b=2$ and $N=0$ in Theorem, we have

$$
\begin{aligned}
& f(1)=4-6+3-2=-1<0 \\
& f(2)=32-24+6-2=12>0
\end{aligned}
$$

- Thus, $f(1)<0<f(2)$; that is, $N=0$ is a number between $f(1)$ and $f(2)$.

Now f is continuous since it is a polynomial, so the Intermediate Value Theorem says there is a number c between 1 and 2 such that $f(c)=0$.

- Thus, $f(1)<0<f(2)$; that is, $N=0$ is a number between $f(1)$ and $f(2)$.
- Now f is continuous since it is a polynomial, so the Intermediate Value Theorem says there is a number c between 1 and 2 such that $f(c)=0$.
- Thus, $f(1)<0<f(2)$; that is, $N=0$ is a number between $f(1)$ and $f(2)$.
- Now f is continuous since it is a polynomial, so the Intermediate Value Theorem says there is a number c between 1 and 2 such that $f(c)=0$.
- In other words, the equation $4 x^{3}-6 x^{2}+3 x-2=0$ has at least one root c in the interval $(1,2)$.

