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Limits involving infinity

Infinite Limits

Consider the following example:

Find limx→0 1/x2 if it exists.

Solution :

As x becomes close to 0, x2 also becomes close to 0, and 1/x2

becomes very large.
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Limits involving infinity

Values of f (x) can be made arbitrarily large by taking x close enough
to 0. Thus, the values of f (x) do not approach a number, so limx→0

1
x2

does not exist.

Definition

Let f be a function defined on both sides of a, except possibly at a
itself. Then

lim
x→a

f (x) =∞

means that the values of f (x) can be made arbitrarily large (as large as
we please) by taking x sufficiently close to a , but not equal to a.

A similar definition can be given for the limit of f (x) , as x approaches
a in negative infinity.
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Limits involving infinity

Similar definitions can be given for the one-sided infinite limits.

lim
x→a−

f (x) =∞

lim
x→a−

f (x) = −∞

lim
x→a+

f (x) =∞

lim
x→a+

f (x) = −∞
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Limits involving infinity

Definition

The line x = a is called a vertical asymptote of the curve y = f (x) if
at least one of the following statements is true:

limx→a f (x) =∞ limx→a f (x) = −∞ limx→a− f (x) =∞
limx→a− f (x) = −∞ limx→a+ f (x) =∞ limx→a+ f (x) = −∞

For instance, the y-axis is a vertical asymptote of the curve y = 1/x2

because limx→0(1/x2) =∞
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Limits involving infinity

Example:

Find the vertical asymptotes of f (x) = tanx

Solution:
tanx =

sinx
cosx

There are potential vertical asymptotes where cosx = 0
cosx → 0+ as x → (π/2)− and cosx → 0− as x → (π/2)+

When sinx is positive when x is near π/2, we have
limx→(π/2)−(tanx) =∞ and limx→(π/2)+(tanx) = −∞
This shows that the line π/2 is a vertical asymptote. Similar
reasoning shows that the lines x = (2n + 1)π/2, where n is an
integer, are all vertical asymptotes of f (x) = tanx .
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Limits involving infinity

Example: Another example of a function whose graph has a vertical
asymptote is the natural logarithmic function y = lnx

Solution:
lim

x→0+
(lnx) = −∞

The line x = 0 is a vertical asymptote.
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The precise (ε − δ) definition of Infinite Limit
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The precise (ε − δ) definition of Infinite Limit

Definition

Let f be a function defined on some open interval that contains the
number a, except possibly at itself. Then

lim
x→a

f (x) =∞

means that for every positive number M there is a positive number δ
such that

f (x) > Mwhenever0 < x − a < δ
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The precise (ε − δ) definition of Infinite Limit

Examples

Example:

Use ε− δ definition to prove that limx→0
1
x2 =∞

Solution:

1. Guessing a value for δ. Given M > 0, we want to find δ > 0 such that

1
x2 whenever0 < x − 0 < δ
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The precise (ε − δ) definition of Infinite Limit

that is,

x2 <
1
M

whenever0 < x < δ

x <
1√
M

whenever0 < x < δ

This suggests that we should take δ = 1√
M

Showing that this δ works.If M > 0 is given ,let δ = 1/
√

M. If
0 < x − 0 < δ then,

x < δ ⇒ x2 < δ2

⇒ 1
x2 >

1
δ2 = M

Thus,
1
x2 > Mwhenever0 < x − 0 < δ

Therefore by definition limx→0
1
x2 =∞
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Continuous and discontinuous functions
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Continuous and discontinuous functions

A function f is continuous at a point x = a if the following are true:

1 f (a) is defined

2 limx→a f (x) exists

3 limx→a f (x) = f (a)
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Continuous and discontinuous functions
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Continuous and discontinuous functions

Eg. 01
Where are each of the following functions discontinuous?

1

f (x) =
x2 − x − 2

x − 2

2

f (x) =

{
1
x2 , if x 6= 0
1, if x = 0

A function f(x) is defined as follows :

f (x) =


3 + 2x , if − 3

2 < x ≤ 0
3− 2x , if 0 < x ≤ 3

2

−3− 2x , if x > 3
2

Show that f (x) is continuous at x = 0 and is discontinuous at x = 3
2 .
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Continuous and discontinuous functions

Definition

A function f is continuous from the right at the number a if

lim
x→a+

f (x) = f (a)

and f is continuous from the left at a if

lim
x→a−

f (x) = f (a)
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Continuous and discontinuous functions

Definition

A function f is continuous on an interval if it is continuous at every
number in the interval.

Note that if f is defined only on one side of an endpoint of the interval,
that means the function continuous from the right or continuous from
the left.
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Continuous and discontinuous functions

Eg. 02
Show that the function f (x) = 1−

√
1− x2 is continuous on the interval

[-1,1].

Sol: If −1 < a < 1, then using the limit laws, we have

lim
x→a

f (x) = lim
x→a

(
1−

√
1− x2

)
= 1− lim

x→a

√
1− x2

= 1−
√

lim
x→a

(1− x2)

= 1−
√

1− a2

= f (a)
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Continuous and discontinuous functions

Thus, by first definition, f is continuous at a if −1 < a < 1. Similar
calculations show that,

lim
x→−1+

f (x) = 1 = f (−1) and lim
x→1−

f (x) = 1 = f (1)

So f is continuous from the right at -1 and continuous from the left
at 1.

Therefore, according to second definition, f is continuous on [-1,1].
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Continuous and discontinuous functions

Theorem

If f and g are continuous at a and c is constant, then the following
functions are also continuous at a:

1) f + g 2) f − g 3) cf 4) fg 5) f
g , if g(a) 6= 0
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Continuous and discontinuous functions

Proof :

Each of the five parts of this theorem follows from the corresponding
limit law. For instance, we give the proof of part 1). Since f and g are
continuous at a, we have

lim
x→a

f (x) = f (a) and lim
x→a

g(x) = g(a)

∴ lim
x→a

(f + g)(x) = lim
x→a

[f (x) + g(x)]

= lim
x→a

f (x) + lim
x→a

g(x)

= f (a) + g(a)
= (f + g) (a)

This shows that f + g is continuous at a.
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This shows that f + g is continuous at a.
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Continuous and discontinuous functions

Theorem

1 Any polynomial is continuous everywhere, that is, it is continuous
on R = (−∞,∞).

2 Any rational function is continuous wherever it is defined; that is, it
is continuous on its domain.
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Continuous and discontinuous functions

Proof:

Proof of Part (1):

A polynomial is the function of the form

P(x) = cnxn + cn−1xn−1 + · · ·+ c1x + c0

where c0, c1, · · · , cn are constants.
We know that

lim
x→a

c0 = c0

and
lim
x→a

xm = am m = 1,2, · · · ,n
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Continuous and discontinuous functions

Proof Contd..

This equation is precisely the statement that the function
f (x) = xn is a continuous function.
Thus by part 3) of previous theorem, the function g(x) = cxn is
continuous.
Since P is a sum of functions of the form and a constant function,
it follows from part 1) of previous theorem that P is continuous.

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 8 25 / 1



Continuous and discontinuous functions

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

f (x) =
P(x)
Q(x)

where P and Q are polynomials.

The domain of f is D = {x ∈ R|Q(x) 6= 0} .

We know from part (a) that P and Q are continuous everywhere.
Thus, by part 5) of previous theorem, f is continuous at every
number in D.

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 8 26 / 1



Continuous and discontinuous functions

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

f (x) =
P(x)
Q(x)

where P and Q are polynomials.

The domain of f is D = {x ∈ R|Q(x) 6= 0} .

We know from part (a) that P and Q are continuous everywhere.
Thus, by part 5) of previous theorem, f is continuous at every
number in D.

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 8 26 / 1



Continuous and discontinuous functions

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

f (x) =
P(x)
Q(x)

where P and Q are polynomials.

The domain of f is D = {x ∈ R|Q(x) 6= 0} .

We know from part (a) that P and Q are continuous everywhere.
Thus, by part 5) of previous theorem, f is continuous at every
number in D.

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 8 26 / 1



Continuous and discontinuous functions

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

f (x) =
P(x)
Q(x)

where P and Q are polynomials.

The domain of f is D = {x ∈ R|Q(x) 6= 0} .

We know from part (a) that P and Q are continuous everywhere.
Thus, by part 5) of previous theorem, f is continuous at every
number in D.

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 8 26 / 1



Continuous and discontinuous functions

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

f (x) =
P(x)
Q(x)

where P and Q are polynomials.

The domain of f is D = {x ∈ R|Q(x) 6= 0} .

We know from part (a) that P and Q are continuous everywhere.
Thus, by part 5) of previous theorem, f is continuous at every
number in D.

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 8 26 / 1



Continuous and discontinuous functions

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

f (x) =
P(x)
Q(x)

where P and Q are polynomials.

The domain of f is D = {x ∈ R|Q(x) 6= 0} .

We know from part (a) that P and Q are continuous everywhere.
Thus, by part 5) of previous theorem, f is continuous at every
number in D.

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 8 26 / 1



Continuous and discontinuous functions

Proof Contd..

Proof of Part (2):

A rational function is a function of the form

f (x) =
P(x)
Q(x)

where P and Q are polynomials.

The domain of f is D = {x ∈ R|Q(x) 6= 0} .

We know from part (a) that P and Q are continuous everywhere.
Thus, by part 5) of previous theorem, f is continuous at every
number in D.

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 8 26 / 1



Continuous and discontinuous functions
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Continuous and discontinuous functions

Theorem

The Intermediate Value Theorem

Suppose that f is continuous on the closed interval [a,b] and let N be

any number between f(a) and f(b), where f (a) 6= f (b). Then there

exists a number c in (a,b) such that f(c) = N.
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Continuous and discontinuous functions

Eg.

Show that there is a root of the equation 4x3 − 6x2 + 3x − 2 = 0,
between 1 and 2.

Sol:

Let f (x) = 4x3 − 6x2 + 3x − 2 = 0. Suppose number c is the root such
that f (c) = 0.

We take a = 1,b = 2 and N = 0 in Theorem, we have

f (1) = 4− 6 + 3− 2 = −1 < 0
f (2) = 32− 24 + 6− 2 = 12 > 0
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Continuous and discontinuous functions

Thus, f (1) < 0 < f (2); that is, N = 0 is a number between f (1)
and f (2).

Now f is continuous since it is a polynomial, so the Intermediate
Value Theorem says there is a number c between 1 and 2 such
that f (c) = 0.

In other words, the equation 4x3 − 6x2 + 3x − 2 = 0 has at least
one root c in the interval (1,2).

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 8 30 / 1



Continuous and discontinuous functions

Thus, f (1) < 0 < f (2); that is, N = 0 is a number between f (1)
and f (2).

Now f is continuous since it is a polynomial, so the Intermediate
Value Theorem says there is a number c between 1 and 2 such
that f (c) = 0.

In other words, the equation 4x3 − 6x2 + 3x − 2 = 0 has at least
one root c in the interval (1,2).

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 8 30 / 1



Continuous and discontinuous functions

Thus, f (1) < 0 < f (2); that is, N = 0 is a number between f (1)
and f (2).

Now f is continuous since it is a polynomial, so the Intermediate
Value Theorem says there is a number c between 1 and 2 such
that f (c) = 0.

In other words, the equation 4x3 − 6x2 + 3x − 2 = 0 has at least
one root c in the interval (1,2).

Dr. G.H.J. Lanel (USJP) MAT 122 2.0 Calculus Lecture 8 30 / 1


