Graph Theory and Its Applications

Dr. G.H.J. Lanel

Lecture 9

Outline

Outline

(1) The Shortest Path Problem

(2) Shortest Path Algorithms
(3) Shortest Path Problems

- Single-source shortest path problem
- Point to point shortest path problem
- All pairs shortest path problem
- Negative weights shortest path problem
(4) Unweighted Shortest Paths
(5) Weighted Shortest Paths
- Dijkstra's algorithm
- Find the shortest path from point A to point B. - Shortest in time, distance, cost, etc. - Numerous applications:
- Find the shortest path from point A to point B.
- Shortest in time, distance, cost, etc.
- Find the shortest path from point A to point B.
- Shortest in time, distance, cost, etc.
- Numerous applications:
- Find the shortest path from point A to point B.
- Shortest in time, distance, cost, etc.
- Numerous applications:
- Map navigation,
- Flight itineraries,
- Find the shortest path from point A to point B.
- Shortest in time, distance, cost, etc.
- Numerous applications:
- Map navigation,
- Flight itineraries,
- Circuit wiring,
- Network routing.
- Find the shortest path from point A to point B.
- Shortest in time, distance, cost, etc.
- Numerous applications:
- Map navigation,
- Flight itineraries,
- Circuit wiring,
- Find the shortest path from point A to point B.
- Shortest in time, distance, cost, etc.
- Numerous applications:
- Map navigation,
- Flight itineraries,
- Circuit wiring,
- Network routing.

Outline

(1) The Shortest Path Problem

2) Shortest Path Algorithms

(3) Shortest Path Problems

- Single-source shortest path problem
- Point to point shortest path problem
- All pairs shortest path problem
- Negative weights shortest path problem
(4) Unweighted Shortest Paths
(5) Weighted Shortest Paths
- Dijkstra's algorithm
- Weighted graphs:
- Weighted graphs:
- Input is a weighted graph where each edge $\left(v_{i}, v_{j}\right)$ has $\operatorname{cost} c_{i, j}$ to traverse the edge.
- Goal: to find a smallest cost path.
- Weighted graphs:
- Input is a weighted graph where each edge $\left(v_{i}, v_{j}\right)$ has $\operatorname{cost} c_{i, j}$ to traverse the edge.
- Cost of a path $v_{1} v_{2} \ldots v_{N}$ is $\sum_{i=1}^{N-1} c_{i, i+1}$.
- Goal: to find a smallest cost path.
- Weighted graphs:
- Input is a weighted graph where each edge $\left(v_{i}, v_{j}\right)$ has $\operatorname{cost} c_{i, j}$ to traverse the edge.
- Cost of a path $v_{1} v_{2} \ldots v_{N}$ is $\sum_{i=1}^{N-1} c_{i, i+1}$.
- Goal: to find a smallest cost path.
- Weighted graphs:
- Input is a weighted graph where each edge $\left(v_{i}, v_{j}\right)$ has $\operatorname{cost} c_{i, j}$ to traverse the edge.
- Cost of a path $v_{1} v_{2} \ldots v_{N}$ is $\sum_{i=1}^{N-1} c_{i, i+1}$.
- Goal: to find a smallest cost path.
- Unweighted graphs:
- Weighted graphs:
- Input is a weighted graph where each edge $\left(v_{i}, v_{j}\right)$ has $\operatorname{cost} c_{i, j}$ to traverse the edge.
- Cost of a path $v_{1} v_{2} \ldots v_{N}$ is $\sum_{i=1}^{N-1} c_{i, i+1}$.
- Goal: to find a smallest cost path.
- Unweighted graphs:
- Input is an unweighted graph.
- Goal: to find a path with shortest length.
- Weighted graphs:
- Input is a weighted graph where each edge $\left(v_{i}, v_{j}\right)$ has $\operatorname{cost} c_{i, j}$ to traverse the edge.
- Cost of a path $v_{1} v_{2} \ldots v_{N}$ is $\sum_{i=1}^{N-1} c_{i, i+1}$.
- Goal: to find a smallest cost path.
- Unweighted graphs:
- Input is an unweighted graph.
- Goal: to find a path with shortest length.

Outline

(1) The Shortest Path Problem

2 Shortest Path Algorithms
(3) Shortest Path Problems

- Single-source shortest path problem
- Point to point shortest path problem
- All pairs shortest path problem
- Negative weights shortest path problem
(4) Unweighted Shortest Paths
(5) Weighted Shortest Paths
- Dijkstra's algorithm

Single-source shortest path problem

Given a weighted graph $G=(V, E)$, and a source vertex s, find the minimum weighted path from s to every other vertex in G.

Single-source shortest path problem

Given a weighted graph $G=(V, E)$, and a source vertex s, find the minimum weighted path from s to every other vertex in G.

Point to point shortest path problem

- Given $G=(V, E)$ and two vertices A and B, find a shortest path from A (source) to B (destination).

Point to point shortest path problem

- Given $G=(V, E)$ and two vertices A and B, find a shortest path from A (source) to B (destination).
- Solution:

Point to point shortest path problem

- Given $G=(V, E)$ and two vertices A and B, find a shortest path from A (source) to B (destination).
- Solution:
(1) Run the code for Single Source Shortest Path using source as A.
(2) Stop algorithm when B is reached.

Point to point shortest path problem

- Given $G=(V, E)$ and two vertices A and B, find a shortest path from A (source) to B (destination).
- Solution:
(1) Run the code for Single Source Shortest Path using source as A.
(2) Stop algorithm when B is reached.

All pairs shortest path problem

- Given $G=(V, E)$, find a shortest path between all pairs of vertices.
- Solutions: Solve Single Source Shortest Path for each vertex as source

All pairs shortest path problem

- Given $G=(V, E)$, find a shortest path between all pairs of vertices.
- Solutions: Solve Single Source Shortest Path for each vertex as source

Negative weights shortest path problem

- Graphs can have negative weights.

Negative weights shortest path problem

- Graphs can have negative weights.

- E.g.,

Negative weights shortest path problem

- Graphs can have negative weights.

- E.g.,
- Shortest positive-weight path is a net gain.
- Problem: Negative weight cycles

Allow arhitrarily-lown nath cocts

Negative weights shortest path problem

- Graphs can have negative weights.

- E.g.,
- Shortest positive-weight path is a net gain.
- Path may include individual losses.

Problem: Negative weight cycles
Allow arbitrarily-low path costs

- Solution: Detect presence of negative-weight cycles

Negative weights shortest path problem

- Graphs can have negative weights.

- E.g.,
- Shortest positive-weight path is a net gain.
- Path may include individual losses.
- Problem: Negative weight cycles

Allow arbitrarily-low path costs

Negative weights shortest path problem

- Graphs can have negative weights.

- E.g.,
- Shortest positive-weight path is a net gain.
- Path may include individual losses.
- Problem: Negative weight cycles

Allow arbitrarily-low path costs

- Solution: Detect presence of negative-weight cycles

Outline

(1) The Shortest Path Problem

(2) Shortest Path Algorithms

(3) Shortest Path Problems

- Single-source shortest path problem
- Point to point shortest path problem
- All pairs shortest path problem
- Negative weights shortest path problem

4) Unweighted Shortest Paths

5. Weighted Shortest Paths

- Dijkstra's algorithm
- No weights on edges.

- Find shortest length paths.

- Same as weighted shortest path with all weights equal.
- No weights on edges.
- Find shortest length paths.
- Same as weighted shortest path with all weights equal.
- No weights on edges.
- Find shortest length paths.
- Same as weighted shortest path with all weights equal.
- No weights on edges.
- Find shortest length paths.
- Same as weighted shortest path with all weights equal.
- Use BFS algorithm.

For each vertex, keep track of

- Whether we have visited it (known).

Its distance from the start vertex (d_{v}).

- Its predecessor vertex along the shortest path from the start vertex (p_{v}).

For each vertex, keep track of

- Whether we have visited it (known).
- Its distance from the start vertex $\left(d_{v}\right)$.
- Its predecessor vertex along the shortest path from the start

For each vertex, keep track of

- Whether we have visited it (known).
- Its distance from the start vertex $\left(d_{v}\right)$.
- Its predecessor vertex along the shortest path from the start vertex $\left(p_{v}\right)$.

v	known	d_{v}	p_{v}
v_{1}	F	∞	0
v_{2}	F	∞	0
v_{3}	F	0	0
v_{4}	F	∞	0
v_{5}	F	∞	0
v_{6}	F	∞	0
v_{7}	F	∞	0

v	Initial State			v_{3} Dequeued			v_{1} Dequeued			v_{6} Dequeued		
	known	d_{v}	p_{v}	known	d_{v}	p	known	d_{v}	p	known	d_{v}	p_{v}
v_{1}	F	∞	0	F	1	v_{3}	T	1	v_{3}	T	1	v_{3}
v_{2}	F	∞	0	F	∞	0	F	2	v_{1}	F	2	v_{1}
v_{3}	F	0	0	T	0	0	T	0	0	T	0	0
v_{4}	F	∞	0	F	∞	0	F	2	ν_{1}	F	2	v_{1}
v_{5}	F	∞	0									
v_{6}	F	∞	0	F	1	v_{3}	F	1	v_{3}	T	1	ν_{3}
v_{7}	F	∞	0									
Q:	v_{3}			v_{1}, v_{6}			v_{6}, v_{2}, v_{4}			v_{2}, v_{4}		
	v_{2} Dequeued			v_{4} Dequeued			v_{5} Dequeued			v_{7} Dequeued		
v	known	d_{v}	p_{v}	known	d_{v}	p	known	d_{v}	p	known	d_{v}	p_{v}
v_{1}	T	1	v_{3}									
v_{2}	T	2	v_{1}									
ν_{3}	T	0	0	T	0	0	T	0	0	T	0	0
v_{4}	F	2	ν_{1}	T	2	v_{1}	T	2	v_{1}	T	2	v_{1}
v_{5}	F	3	v_{2}	F	3	v_{2}	T	3	v_{2}	T	3	v_{2}
v_{6}	T	1	v_{3}									
v_{7}	F	∞	0	F	3	v_{4}	F	3	v_{4}	T	3	v_{4}
Q:	v_{4}, v_{5}			v_{5}, v_{7}			v_{7}			empty		

Outline

(1) The Shortest Path Problem

(2) Shortest Path Algorithms
(3) Shortest Path Problems

- Single-source shortest path problem
- Point to point shortest path problem
- All pairs shortest path problem
- Negative weights shortest path problem
(4) Unweighted Shortest Paths
(5) Weighted Shortest Paths
- Dijkstra's algorithm

Use Dijkstras algorithm:

- GREEDY strategy: Always pick the next closest vertex to the source.
- Use priority queue to store unvisited vertices by distance from s.
- Does not work with negative weights.

Use Dijkstras algorithm:

- GREEDY strategy: Always pick the next closest vertex to the source.
- Use priority queue to store unvisited vertices by distance from s.

Use Dijkstras algorithm:

- GREEDY strategy: Always pick the next closest vertex to the source.
- Use priority queue to store unvisited vertices by distance from s.
- Does not work with negative weights.
- Input: Vertices with cost.

Output: The shortest path with the cost between s and v. Step 1. Set $\lambda(s)=0$ and for all vertices $v \neq s, \lambda(v)=\infty$. Set $T=V$, the vertex set of G.

- Input: Vertices with cost.
- Output: The shortest path with the cost between s and v.
- Step 1. Set $\lambda(s)=0$ and for all vertices $v \neq s, \lambda(v)=\infty$. Set $T=V$, the vertex set of G.
- Step 2. Let u be a vertex in T for which $\lambda(u)$ is minimum.
- Input: Vertices with cost.
- Output: The shortest path with the cost between s and v.
- Step 1. Set $\lambda(s)=0$ and for all vertices $v \neq s, \lambda(v)=\infty$. Set $T=V$, the vertex set of G.

- Step 2. Let u be a vertex in T for which $\lambda(u)$ is minimum.

- Input: Vertices with cost.
- Output: The shortest path with the cost between s and v.
- Step 1. Set $\lambda(s)=0$ and for all vertices $v \neq s, \lambda(v)=\infty$. Set $T=V$, the vertex set of G.
- Step 2. Let u be a vertex in T for which $\lambda(u)$ is minimum.

Step 3. If $u=t$, then stop.

- Input: Vertices with cost.
- Output: The shortest path with the cost between s and v.
- Step 1. Set $\lambda(s)=0$ and for all vertices $v \neq s, \lambda(v)=\infty$. Set $T=V$, the vertex set of G.
- Step 2. Let u be a vertex in T for which $\lambda(u)$ is minimum.
- Step 3. If $u=t$, then stop.
- Input: Vertices with cost.
- Output: The shortest path with the cost between s and v.
- Step 1. Set $\lambda(s)=0$ and for all vertices $v \neq s, \lambda(v)=\infty$. Set $T=V$, the vertex set of G.
- Step 2. Let u be a vertex in T for which $\lambda(u)$ is minimum.
- Step 3. If $u=t$, then stop.
- Step 4. For every edge $e=u v$ incident with u, if $v \in T$ and $\lambda(v)>\lambda(u)+\omega(e)$ change the value of $\lambda(v)$ to $\lambda(u)+\omega(e)$.
- Input: Vertices with cost.
- Output: The shortest path with the cost between s and v.
- Step 1. Set $\lambda(s)=0$ and for all vertices $v \neq s, \lambda(v)=\infty$. Set $T=V$, the vertex set of G.
- Step 2. Let u be a vertex in T for which $\lambda(u)$ is minimum.
- Step 3. If $u=t$, then stop.
- Step 4. For every edge $e=u v$ incident with u, if $v \in T$ and $\lambda(v)>\lambda(u)+\omega(e)$ change the value of $\lambda(v)$ to $\lambda(u)+\omega(e)$.
- Step 5. Change T to $T-\{u\}$ and go to step 2.

An Example

Why Dijkstra's Algorithm Works

- A least-cost path from vertex X to vertex Y contains least-cost paths from X to every vertex on the path to Y.

Why Dijkstra's Algorithm Works

- A least-cost path from vertex X to vertex Y contains least-cost paths from X to every vertex on the path to Y.
- E.g., if $X \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{3} \rightarrow Y$ is the least-cost path from X to Y, then

Why Dijkstra's Algorithm Works

- A least-cost path from vertex X to vertex Y contains least-cost paths from X to every vertex on the path to Y.
- E.g., if $X \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{3} \rightarrow Y$ is the least-cost path from X to Y, then
- $X \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{3}$ is the least-cost path from X to C_{3}.

Why Dijkstra's Algorithm Works

- A least-cost path from vertex X to vertex Y contains least-cost paths from X to every vertex on the path to Y.
- E.g., if $X \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{3} \rightarrow Y$ is the least-cost path from X to Y, then
- $X \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{3}$ is the least-cost path from X to C_{3}.
- $X \rightarrow C_{1} \rightarrow C_{2}$ is the least-cost path from X to C_{2}.

Why Dijkstra's Algorithm Works

- A least-cost path from vertex X to vertex Y contains least-cost paths from X to every vertex on the path to Y.
- E.g., if $X \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{3} \rightarrow Y$ is the least-cost path from X to Y, then
- $X \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{3}$ is the least-cost path from X to C_{3}.
- $X \rightarrow C_{1} \rightarrow C_{2}$ is the least-cost path from X to C_{2}.
- $X \rightarrow C_{1}$ is the least-cost path from X to C_{1}.

What about graphs with negative edges?

- Problem: Will the Dijkstras algorithm work as is?
- Solution: Do not mark any vertex as known. Instead allow multiple updates.

What about graphs with negative edges?

- Problem: Will the Dijkstras algorithm work as is?
- Solution: Do not mark any vertex as known. Instead allow multiple updates.

