Graph Theory and Its Applications

Dr. G.H.J. Lanel

Lecture 9

Dr. G.H.J. Lanel (USJP)

Graph Theory and Its Applications

Lecture 9 1 / 22

Outline

Outline

イロト イロト イヨト イヨト

Outline

1 The Shortest Path Problem

2 Shortest Path Algorithms

Shortest Path Problems

- Single-source shortest path problem
- Point to point shortest path problem
- All pairs shortest path problem
- Negative weights shortest path problem

Unweighted Shortest Paths

Weighted Shortest PathsDijkstra's algorithm

- A 🖻 🕨

• Find the shortest path from point *A* to point *B*.

- Shortest in time, distance, cost, etc.
- Numerous applications:
 - Map navigation,
 - Elight itineraries
 - Circuit wiring,
 - Network routing.

• Find the shortest path from point *A* to point *B*.

- Shortest in time, distance, cost, etc.
- Numerous applications:
 - Map navigation.
 - Elight itineraries
 - Circuit wiring,
 - Network routing.

イロト イポト イヨト イヨト

- Find the shortest path from point *A* to point *B*.
- Shortest in time, distance, cost, etc.
- Numerous applications:
 - Map navigation,
 - Flight itineraries,
 - Circuit wiring,
 - Network routing.

- Find the shortest path from point *A* to point *B*.
- Shortest in time, distance, cost, etc.
- Numerous applications:
 - Map navigation,
 - Flight itineraries,
 - Circuit wiring,
 - Network routing.

- Find the shortest path from point *A* to point *B*.
- Shortest in time, distance, cost, etc.
- Numerous applications:
 - Map navigation,
 - Flight itineraries,
 - Circuit wiring,
 - Network routing.

- Find the shortest path from point *A* to point *B*.
- Shortest in time, distance, cost, etc.
- Numerous applications:
 - Map navigation,
 - Flight itineraries,
 - Circuit wiring,
 - Network routing.

- Find the shortest path from point *A* to point *B*.
- Shortest in time, distance, cost, etc.
- Numerous applications:
 - Map navigation,
 - Flight itineraries,
 - Circuit wiring,
 - Network routing.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

The Shortest Path Problem

2 Shortest Path Algorithms

Shortest Path Problems

- Single-source shortest path problem
- Point to point shortest path problem
- All pairs shortest path problem
- Negative weights shortest path problem

Unweighted Shortest Paths

Weighted Shortest PathsDijkstra's algorithm

- A 🖻 🕨

• Weighted graphs:

- Input is a weighted graph where each edge (v_i, v_j) has cost c_{i,j} to traverse the edge.
- Cost of a path $v_1 v_2 \dots v_N$ is $\sum_{i=1}^{N-1} c_{i,i+1}$.
- Goal: to find a smallest cost path.
- Unweighted graphs:
 - Input is an unweighted graph...
 - Goal: to find a path with shortest length.

Weighted graphs:

• Input is a weighted graph where each edge (*v_i*, *v_j*) has cost *c_{i,j}* to traverse the edge.

• Cost of a path $v_1 v_2 \dots v_N$ is $\sum c_{i,i+1}$.

• Goal: to find a smallest cost path.

Unweighted graphs:

- Input is an unweighted graph...
- Goal: to find a path with shortest length.

Weighted graphs:

- Input is a weighted graph where each edge (v_i, v_j) has cost c_{i,j} to traverse the edge.
- Cost of a path $v_1 v_2 \dots v_N$ is $\sum_{i=1}^{N-1} c_{i,i+1}$.

Goal: to find a smallest cost path.

Unweighted graphs:

- Input is an unweighted graph...
- Goal: to find a path with shortest length.

• Weighted graphs:

 Input is a weighted graph where each edge (v_i, v_j) has cost c_{i,j} to traverse the edge.

• Cost of a path
$$v_1 v_2 \dots v_N$$
 is $\sum_{i=1}^{N-1} c_{i,i+1}$.

- Goal: to find a smallest cost path.
- Unweighted graphs:
 - Input is an unweighted graph.
 - Goal: to find a path with shortest length.

- Weighted graphs:
 - Input is a weighted graph where each edge (v_i, v_j) has cost c_{i,j} to traverse the edge.
 - Cost of a path $v_1 v_2 \dots v_N$ is $\sum_{i=1}^{N-1} c_{i,i+1}$.
 - Goal: to find a smallest cost path.
- Unweighted graphs:
 - Input is an unweighted graph.
 - Goal: to find a path with shortest length.

- Weighted graphs:
 - Input is a weighted graph where each edge (v_i, v_j) has cost c_{i,j} to traverse the edge.
 - Cost of a path $v_1 v_2 \dots v_N$ is $\sum_{i=1}^{N-1} c_{i,i+1}$.
 - Goal: to find a smallest cost path.
- Unweighted graphs:
 - Input is an unweighted graph.
 - Goal: to find a path with shortest length.

- Weighted graphs:
 - Input is a weighted graph where each edge (v_i, v_j) has cost c_{i,j} to traverse the edge.
 - Cost of a path $v_1 v_2 ... v_N$ is $\sum_{i=1}^{N-1} c_{i,i+1}$.
 - Goal: to find a smallest cost path.
- Unweighted graphs:
 - Input is an unweighted graph.
 - Goal: to find a path with shortest length.

Outline

2 Shortest Path Algorithms

Shortest Path Problems

- Single-source shortest path problem
- Point to point shortest path problem
- All pairs shortest path problem
- Negative weights shortest path problem

Unweighted Shortest Paths

Weighted Shortest Paths
Dijkstra's algorithm

Single-source shortest path problem

Given a weighted graph G = (V, E), and a source vertex *s*, find the minimum weighted path from *s* to every other vertex in *G*.

Single-source shortest path problem

Given a weighted graph G = (V, E), and a source vertex *s*, find the minimum weighted path from *s* to every other vertex in *G*.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Given G = (V, E) and two vertices A and B, find a shortest path from A (source) to B (destination).

• Solution:

Run the code for Single Source Shortest Path using source as A.

Stop algorithm when B is reached...

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Given G = (V, E) and two vertices A and B, find a shortest path from A (source) to B (destination).
- Solution:
 - Run the code for Single Source Shortest Path using source as A.
 - Stop algorithm when B is reached.

- Given G = (V, E) and two vertices A and B, find a shortest path from A (source) to B (destination).
- Solution:
 - Run the code for Single Source Shortest Path using source as A.
 - Stop algorithm when B is reached.

- Given G = (V, E) and two vertices A and B, find a shortest path from A (source) to B (destination).
- Solution:
 - Run the code for Single Source Shortest Path using source as A.
 - Stop algorithm when B is reached.

All pairs shortest path problem

• Given *G* = (*V*, *E*), find a shortest path between all pairs of vertices.

Solutions: Solve Single Source Shortest Path for each vertex as source

All pairs shortest path problem

- Given *G* = (*V*, *E*), find a shortest path between all pairs of vertices.
- Solutions: Solve Single Source Shortest Path for each vertex as source

• Graphs can have negative weights.

● E.g.,

- Shortest positive-weight path is a net gain.
- Path may include individual losses.
- Problem: Negative weight cycles

Allow arbitrarily-low path costs

Solution: Detect presence of negative-weight cycles

• Graphs can have negative weights.

• E.g.,

- Shortest positive-weight path is a net gain.
- Path may include individual losses.
- Problem: Negative weight cycles

Allow arbitrarily-low path costs

Solution: Detect presence of negative-weight cycles

• Graphs can have negative weights.

- E.g.,
 - Shortest positive-weight path is a net gain.
 - Path may include individual losses.
- Problem: Negative weight cycles

Allow arbitrarily-low path costs

Solution: Detect presence of negative-weight cycles

• Graphs can have negative weights.

- E.g.,
 - Shortest positive-weight path is a net gain.
 - Path may include individual losses.
- Problem: Negative weight cycles

Allow arbitrarily-low path costs

Solution: Detect presence of negative-weight cycles

• Graphs can have negative weights.

- E.g.,
 - Shortest positive-weight path is a net gain.
 - Path may include individual losses.
- Problem: Negative weight cycles

Allow arbitrarily-low path costs

Solution: Detect presence of negative-weight cycles

4 Th

< (□) < 三 > (□)

• Graphs can have negative weights.

- E.g.,
 - Shortest positive-weight path is a net gain.
 - Path may include individual losses.
- Problem: Negative weight cycles

Allow arbitrarily-low path costs

• Solution: Detect presence of negative-weight cycles

< ∃ ►

-

Outline

- The Shortest Path Problem
- 2 Shortest Path Algorithms
 - Shortest Path Problems
 - Single-source shortest path problem
 - Point to point shortest path problem
 - All pairs shortest path problem
 - Negative weights shortest path problem

Unweighted Shortest Paths

Weighted Shortest Paths
 Diikstra's algorithm

- ∢ ∃ ▶

• No weights on edges.

- Find shortest length paths.
- Same as weighted shortest path with all weights equal.
- Use BFS algorithm.

- No weights on edges.
- Find shortest length paths.
- Same as weighted shortest path with all weights equal.
- Use BFS algorithm.

- No weights on edges.
- Find shortest length paths.
- Same as weighted shortest path with all weights equal.
- Use BFS algorithm.

- No weights on edges.
- Find shortest length paths.
- Same as weighted shortest path with all weights equal.
- Use BFS algorithm.

< ロ > < 同 > < 回 > < 回 >

- For each vertex, keep track of
 - Whether we have visited it (known).
 - Its distance from the start vertex (d_v) .
 - Its predecessor vertex along the shortest path from the start vertex (p_v).

< ロ > < 同 > < 回 > < 回 >

For each vertex, keep track of

- Whether we have visited it (known).
- Its distance from the start vertex (d_v) .
- Its predecessor vertex along the shortest path from the start vertex (p_v).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For each vertex, keep track of

- Whether we have visited it (known).
- Its distance from the start vertex (d_v) .
- Its predecessor vertex along the shortest path from the start vertex (p_v).

ν	known	d _v	p_{ν}		
v ₁	F	∞	0		
v_2	F	∞	0		
v ₃	F	0	0		
v_4	F	∞	0		
v ₅	F	∞	0		
v ₆	F	∞	0		
v_7	F	∞	0		

	Initial State			v3 Dequeued			v ₁ De	v1 Dequeued			v ₆ Dequeued		
ν	known	d_v	p_{ν}	known	d_v	p_{v}	known	d_v	p_{ν}	known	d_v	p_{ν}	
v ₁	F	∞	0	F	1	v ₃	Т	1	v ₃	Т	1	v ₃	
v_2	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1	
v ₃	F	0	0	Т	0	0	Т	0	0	Т	0	0	
v_4	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1	
v ₅	F	∞	0	F	∞	0	F	∞	0	F	∞	0	
v_6	F	∞	0	F	1	v ₃	F	1	v ₃	Т	1	v ₃	
ν_7	F	∞	0	F	∞	0	F	∞	0	F	∞	0	
Q:		v ₃		ν	ι, ν ₆		v ₆ ,	v_2, v_4		v	$_{2}, v_{4}$		
	v ₂ Dequeued			v ₄ Dequeued		v5 Dequeued		v7 Dequeued					
ν	known	d_v	p_{ν}	known	d_v	p _v	known	d_v	p _v	known	d_v	p _v	
v ₁	Т	1	v ₃	Т	1	v ₃	Т	1	v ₃	Т	1	v ₃	
v_2	Т	2	v_1	Т	2	v_1	Т	2	v_1	Т	2	v_1	
v_3	Т	0	0	Т	0	0	Т	0	0	Т	0	0	
v_4	F	2	v_1	Т	2	v_1	Т	2	v_1	Т	2	v_1	
v ₅	F	3	v ₂	F	3	v ₂	Т	3	v ₂	Т	3	v ₂	
v ₆	Т	1	v ₃	Т	1	v ₃	Т	1	v ₃	Т	1	v ₃	
ν_7	F	∞	0	F	3	v_4	F	3	ν_4	Т	3	v_4	
Q:	v_4, v_5			v	5, V7			v7		eı	npty		

(日)

▲□ > ▲圖 > ▲ 国 > ▲ 国 >

Outline

- The Shortest Path Problem
- 2 Shortest Path Algorithms
 - Shortest Path Problems
 - Single-source shortest path problem
 - Point to point shortest path problem
 - All pairs shortest path problem
 - Negative weights shortest path problem
 - Unweighted Shortest Paths
 - Weighted Shortest PathsDijkstra's algorithm

- ∢ ∃ ▶

Use Dijkstras algorithm:

• GREEDY strategy: Always pick the next closest vertex to the source.

• Use priority queue to store unvisited vertices by distance from *s*.

• Does not work with negative weights.

Use Dijkstras algorithm:

- GREEDY strategy: Always pick the next closest vertex to the source.
- Use priority queue to store unvisited vertices by distance from *s*.

• Does not work with negative weights.

Use Dijkstras algorithm:

- GREEDY strategy: Always pick the next closest vertex to the source.
- Use priority queue to store unvisited vertices by distance from *s*.
- Does not work with negative weights.

• Input: Vertices with cost.

- **Output**: The shortest path with the cost between *s* and *v*.
- Step 1. Set $\lambda(s) = 0$ and for all vertices $v \neq s, \lambda(v) = \infty$. Set T = V, the vertex set of *G*.
- Step 2. Let *u* be a vertex in *T* for which $\lambda(u)$ is minimum.
- **Step 3**. If *u* = *t*, then stop.
- Step 4. For every edge e = uv incident with u, if $v \in T$ and $\lambda(v) > \lambda(u) + \omega(e)$ change the value of $\lambda(v)$ to $\lambda(u) + \omega(e)$.
- Step 5. Change T to $T \{u\}$ and go to step 2.

- Input: Vertices with cost.
- **Output**: The shortest path with the cost between *s* and *v*.
- Step 1. Set $\lambda(s) = 0$ and for all vertices $v \neq s, \lambda(v) = \infty$. Set T = V, the vertex set of *G*.
- Step 2. Let *u* be a vertex in *T* for which $\lambda(u)$ is minimum.
- **Step 3**. If *u* = *t*, then stop.
- Step 4. For every edge e = uv incident with u, if $v \in T$ and $\lambda(v) > \lambda(u) + \omega(e)$ change the value of $\lambda(v)$ to $\lambda(u) + \omega(e)$.
- Step 5. Change T to $T \{u\}$ and go to step 2.

A D F A B F A B F A B F

- Input: Vertices with cost.
- Output: The shortest path with the cost between s and v.
- Step 1. Set $\lambda(s) = 0$ and for all vertices $v \neq s, \lambda(v) = \infty$. Set T = V, the vertex set of *G*.
- Step 2. Let *u* be a vertex in *T* for which $\lambda(u)$ is minimum.
- **Step 3**. If *u* = *t*, then stop.
- Step 4. For every edge e = uv incident with u, if $v \in T$ and $\lambda(v) > \lambda(u) + \omega(e)$ change the value of $\lambda(v)$ to $\lambda(u) + \omega(e)$.
- Step 5. Change T to $T \{u\}$ and go to step 2.

イロト 不得 トイヨト イヨト 二日

- Input: Vertices with cost.
- **Output**: The shortest path with the cost between *s* and *v*.
- Step 1. Set $\lambda(s) = 0$ and for all vertices $v \neq s$, $\lambda(v) = \infty$. Set T = V, the vertex set of *G*.
- Step 2. Let *u* be a vertex in *T* for which $\lambda(u)$ is minimum.
- **Step 3**. If *u* = *t*, then stop.
- Step 4. For every edge e = uv incident with u, if $v \in T$ and $\lambda(v) > \lambda(u) + \omega(e)$ change the value of $\lambda(v)$ to $\lambda(u) + \omega(e)$.
- Step 5. Change T to $T \{u\}$ and go to step 2.

- Input: Vertices with cost.
- **Output**: The shortest path with the cost between *s* and *v*.
- Step 1. Set $\lambda(s) = 0$ and for all vertices $v \neq s, \lambda(v) = \infty$. Set T = V, the vertex set of *G*.
- Step 2. Let *u* be a vertex in *T* for which $\lambda(u)$ is minimum.
- **Step 3**. If *u* = *t*, then stop.
- Step 4. For every edge e = uv incident with u, if $v \in T$ and $\lambda(v) > \lambda(u) + \omega(e)$ change the value of $\lambda(v)$ to $\lambda(u) + \omega(e)$.
- Step 5. Change T to $T \{u\}$ and go to step 2.

- Input: Vertices with cost.
- **Output**: The shortest path with the cost between *s* and *v*.
- Step 1. Set $\lambda(s) = 0$ and for all vertices $v \neq s, \lambda(v) = \infty$. Set T = V, the vertex set of *G*.
- Step 2. Let *u* be a vertex in *T* for which $\lambda(u)$ is minimum.
- **Step 3**. If *u* = *t*, then stop.
- Step 4. For every edge e = uv incident with u, if $v \in T$ and $\lambda(v) > \lambda(u) + \omega(e)$ change the value of $\lambda(v)$ to $\lambda(u) + \omega(e)$.
- Step 5. Change T to $T \{u\}$ and go to step 2.

- Input: Vertices with cost.
- **Output**: The shortest path with the cost between *s* and *v*.
- Step 1. Set $\lambda(s) = 0$ and for all vertices $v \neq s, \lambda(v) = \infty$. Set T = V, the vertex set of *G*.
- Step 2. Let *u* be a vertex in *T* for which $\lambda(u)$ is minimum.
- **Step 3**. If *u* = *t*, then stop.
- Step 4. For every edge e = uv incident with u, if $v \in T$ and $\lambda(v) > \lambda(u) + \omega(e)$ change the value of $\lambda(v)$ to $\lambda(u) + \omega(e)$.
- Step 5. Change T to $T \{u\}$ and go to step 2.

An Example

イロト イヨト イヨト イヨト

Dijkstra's algorithm

Why Dijkstra's Algorithm Works

- A least-cost path from vertex X to vertex Y contains least-cost paths from X to every vertex on the path to Y.

- A least-cost path from vertex X to vertex Y contains least-cost paths from X to every vertex on the path to Y.
- E.g., if $X \to C_1 \to C_2 \to C_3 \to Y$ is the least-cost path from X to Y, then
 - $X \to C_1 \to C_2 \to C_3$ is the least-cost path from X to C_3 .
 - $X \to C_1 \to C_2$ is the least-cost path from X to C_2 .
 - $X \to C_1$ is the least-cost path from X to C_1 .

- A least-cost path from vertex X to vertex Y contains least-cost paths from X to every vertex on the path to Y.
- E.g., if $X \to C_1 \to C_2 \to C_3 \to Y$ is the least-cost path from X to Y, then
 - $X \rightarrow C_1 \rightarrow C_2 \rightarrow C_3$ is the least-cost path from X to C_3 .
 - $X \rightarrow C_1 \rightarrow C_2$ is the least-cost path from X to C_2 .
 - $X \to C_1$ is the least-cost path from X to C_1 .

- A least-cost path from vertex X to vertex Y contains least-cost paths from X to every vertex on the path to Y.
- E.g., if $X \to C_1 \to C_2 \to C_3 \to Y$ is the least-cost path from X to Y, then
 - $X \rightarrow C_1 \rightarrow C_2 \rightarrow C_3$ is the least-cost path from X to C_3 .
 - $X \rightarrow C_1 \rightarrow C_2$ is the least-cost path from X to C_2 .
 - $X \rightarrow C_1$ is the least-cost path from X to C_1 .

- A least-cost path from vertex X to vertex Y contains least-cost paths from X to every vertex on the path to Y.
- E.g., if $X \to C_1 \to C_2 \to C_3 \to Y$ is the least-cost path from X to Y, then
 - $X \rightarrow C_1 \rightarrow C_2 \rightarrow C_3$ is the least-cost path from X to C_3 .
 - $X \rightarrow C_1 \rightarrow C_2$ is the least-cost path from X to C_2 .
 - $X \rightarrow C_1$ is the least-cost path from X to C_1 .

What about graphs with negative edges?

• Problem: Will the Dijkstras algorithm work as is?

• Solution: Do not mark any vertex as known. Instead allow multiple updates.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What about graphs with negative edges?

- Problem: Will the Dijkstras algorithm work as is?
- Solution: Do not mark any vertex as known. Instead allow multiple updates.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >