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The Shortest Path Problem

Find the shortest path from point A to point B.

Shortest in time, distance, cost, etc.

Numerous applications:
Map navigation,

Flight itineraries,

Circuit wiring,

Network routing.
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Shortest Path Algorithms
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Shortest Path Algorithms

Weighted graphs:

Input is a weighted graph where each edge (vi , vj) has cost ci,j to
traverse the edge.

Cost of a path v1v2 . . . vN is
N−1∑
i=1

ci,i+1.

Goal: to find a smallest cost path.

Unweighted graphs:

Input is an unweighted graph.

Goal: to find a path with shortest length.
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Shortest Path Problems
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Shortest Path Problems Single-source shortest path problem

Single-source shortest path problem

Given a weighted graph G = (V ,E), and a source vertex s, find the
minimum weighted path from s to every other vertex in G.

 

s: source 
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Shortest Path Problems Point to point shortest path problem

Point to point shortest path problem

Given G = (V ,E) and two vertices A and B, find a shortest path
from A (source) to B (destination).

Solution:
1 Run the code for Single Source Shortest Path using source as A.
2 Stop algorithm when B is reached.
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Shortest Path Problems All pairs shortest path problem

All pairs shortest path problem

Given G = (V ,E), find a shortest path between all pairs of
vertices.

Solutions: Solve Single Source Shortest Path for each vertex as
source
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Shortest Path Problems Negative weights shortest path problem

Negative weights shortest path problem

Graphs can have negative weights.

 

 

 

E.g.,
Shortest positive-weight path is a net gain.
Path may include individual losses.

Problem: Negative weight cycles

Allow arbitrarily-low path costs

Solution: Detect presence of negative-weight cycles
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Unweighted Shortest Paths
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Unweighted Shortest Paths

No weights on edges.

Find shortest length paths.

Same as weighted shortest path with all weights equal.

Use BFS algorithm.
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Unweighted Shortest Paths

For each vertex, keep track of
Whether we have visited it (known).

Its distance from the start vertex (dv ).

Its predecessor vertex along the shortest path from the start
vertex (pv ).
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Unweighted Shortest Paths
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Unweighted Shortest Paths

 

source 
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Weighted Shortest Paths
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Weighted Shortest Paths

Use Dijkstras algorithm:
GREEDY strategy: Always pick the next closest vertex to the
source.

Use priority queue to store unvisited vertices by distance from s.

Does not work with negative weights.
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Weighted Shortest Paths Dijkstra’s algorithm

Input: Vertices with cost.

Output: The shortest path with the cost between s and v .

Step 1. Set λ(s) = 0 and for all vertices v 6= s, λ(v) =∞. Set
T = V , the vertex set of G.

Step 2. Let u be a vertex in T for which λ(u) is minimum.

Step 3. If u = t , then stop.

Step 4. For every edge e = uv incident with u, if v ∈ T and
λ(v) > λ(u) + ω(e) change the value of λ(v) to λ(u) + ω(e).

Step 5. Change T to T − {u} and go to step 2.
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Weighted Shortest Paths Dijkstra’s algorithm

An Example

 
source 
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Weighted Shortest Paths Dijkstra’s algorithm

Why Dijkstra’s Algorithm Works

A least-cost path from vertex X to vertex Y contains least-cost
paths from X to every vertex on the path to Y .

E.g., if X → C1 → C2 → C3 → Y is the least-cost path from X to
Y , then

X → C1 → C2 → C3 is the least-cost path from X to C3.

X → C1 → C2 is the least-cost path from X to C2.

X → C1 is the least-cost path from X to C1.
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Weighted Shortest Paths Dijkstra’s algorithm

What about graphs with negative edges?

Problem: Will the Dijkstras algorithm work as it is?

Solution: Do not mark any vertex as known. Instead allow multiple
updates.
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