AMT 223 1.0 Discrete Mathematics (General Degree)

Dr. G.H.J. Lanel

Semester 2-2018

Outline

(1) Modeling Combinatorial Problems with Recurrence Relations - Recurrence Relation not in Closed Form

- We previously showed sequences can be defined recursively.

> Indeed, some sequences have no simple definition other than a recursive one.

> In this section we look at sequences that are not defined recursively (they may be defined in terms of an application) but for which a recursive formula can be written down.

- We previously showed sequences can be defined recursively.
- Indeed, some sequences have no simple definition other than a recursive one.

> In this section we look at sequences that are not defined recursively (they may be defined in terms of an application) but for which a recursive formula can be written down.

- We previously showed sequences can be defined recursively.
- Indeed, some sequences have no simple definition other than a recursive one.
- In this section we look at sequences that are not defined recursively (they may be defined in terms of an application) but for which a recursive formula can be written down.
- Such a formula is called a recurrence relation for the sequence.
- Such a formula is called a recurrence relation for the sequence.
- The advantage of such a formula is twofold.
- Such a formula is called a recurrence relation for the sequence.
- The advantage of such a formula is twofold.
- First, it allows us to compute the terms in the sequence, one at a time.
- Such a formula is called a recurrence relation for the sequence.
- The advantage of such a formula is twofold.
- First, it allows us to compute the terms in the sequence, one at a time.
- Second, as we will see in future, it sometimes allows us to derive a closed-form, non-recursive formula for the terms in the sequence.
- Such a formula is called a recurrence relation for the sequence.
- The advantage of such a formula is twofold.
- First, it allows us to compute the terms in the sequence, one at a time.
- Second, as we will see in future, it sometimes allows us to derive a closed-form, non-recursive formula for the terms in the sequence.
- Throughout our discussion, the expression defining f can also involve n, even though we do not show it explicitly as an argument.

Examples

- $a_{n}=n a_{n-1}^{2}+a_{3}+5$ is a recurrence relation.

> Often only the immediately preceding term of the sequence enters into the recurrence relation, so that $a_{n}=f\left(a_{n-1}\right)$ for all $n \geqslant 1$; in this case we say that we have a first-order recurrence relation.

Examples

- $a_{n}=n a_{n-1}^{2}+a_{3}+5$ is a recurrence relation.
- Often only the immediately preceding term of the sequence enters into the recurrence relation, so that $a_{n}=f\left(a_{n-1}\right)$ for all $n \geqslant 1$; in this case we say that we have a first-order recurrence relation.

Examples

- $a_{n}=n a_{n-1}^{2}+a_{3}+5$ is a recurrence relation.
- Often only the immediately preceding term of the sequence enters into the recurrence relation, so that $a_{n}=f\left(a_{n-1}\right)$ for all $n \geqslant 1$; in this case we say that we have a first-order recurrence relation.
- $a_{n}=\frac{n^{2}+1}{a_{n-1}}$ is a first order recurrence relation.
- More generally, if we have $a_{n}=f\left(a_{n-1}, a_{n-2}, \ldots, a_{n-k}\right)$ for all $n \geqslant k$, then the recurrence relation is said to be of order k.
- More generally, if we have $a_{n}=f\left(a_{n-1}, a_{n-2}, \ldots, a_{n-k}\right)$ for all $n \geqslant k$, then the recurrence relation is said to be of order k.
- Often, the restriction $n \geqslant k$ is not written explicitly, but it is to be understood nonetheless, since if $n<k$, then the term a_{n-k} would make no sense.
- Given a sequence that satisfies a k th-order recurrence relation, together with specific values for $a_{0}, a_{1}, \ldots, a_{k-1}$, we can write down as many terms of the sequence as we wish.
- Given a sequence that satisfies a k th-order recurrence relation, together with specific values for $a_{0}, a_{1}, \ldots, a_{k-1}$, we can write down as many terms of the sequence as we wish.
- The specifications of the values of a_{0} through a_{k-1} are called initial conditions.
- Given a sequence that satisfies a k th-order recurrence relation, together with specific values for $a_{0}, a_{1}, \ldots, a_{k-1}$, we can write down as many terms of the sequence as we wish.
- The specifications of the values of a_{0} through a_{k-1} are called initial conditions.
- Occasionally, the sequence begins at an index other than 0.
- Given a sequence that satisfies a k th-order recurrence relation, together with specific values for $a_{0}, a_{1}, \ldots, a_{k-1}$, we can write down as many terms of the sequence as we wish.
- The specifications of the values of a_{0} through a_{k-1} are called initial conditions.
- Occasionally, the sequence begins at an index other than 0.
- For example,
- Given a sequence that satisfies a k th-order recurrence relation, together with specific values for $a_{0}, a_{1}, \ldots, a_{k-1}$, we can write down as many terms of the sequence as we wish.
- The specifications of the values of a_{0} through a_{k-1} are called initial conditions.
- Occasionally, the sequence begins at an index other than 0.
- For example,
- we may have a k th-order recurrence relation valid for all $n>k$ with initial conditions specifying $a_{1}, a_{2}, \ldots, a_{k}$

Example 1

- We saw in a previous section that the Fibonacci sequence f_{n} satisfies the second-order recurrence relation $f_{n}=f_{n-1}+f_{n-2}$ for all $n \geqslant 2$, together with the initial conditions $f_{0}=1$ and $f_{1}=1$.
form the definition of the sequence.

Example 1

- We saw in a previous section that the Fibonacci sequence f_{n} satisfies the second-order recurrence relation $f_{n}=f_{n-1}+f_{n-2}$ for all $n \geqslant 2$, together with the initial conditions $f_{0}=1$ and $f_{1}=1$.
- Indeed, in this case the recurrence relation and initial conditions form the definition of the sequence.

Example 1

- We saw in a previous section that the Fibonacci sequence f_{n} satisfies the second-order recurrence relation $f_{n}=f_{n-1}+f_{n-2}$ for all $n \geqslant 2$, together with the initial conditions $f_{0}=1$ and $f_{1}=1$.
- Indeed, in this case the recurrence relation and initial conditions form the definition of the sequence.
- Knowing the initial conditions and recurrence relation, we can compute the terms of the sequence, one by one.

Example 1

- We saw in a previous section that the Fibonacci sequence f_{n} satisfies the second-order recurrence relation $f_{n}=f_{n-1}+f_{n-2}$ for all $n \geqslant 2$, together with the initial conditions $f_{0}=1$ and $f_{1}=1$.
- Indeed, in this case the recurrence relation and initial conditions form the definition of the sequence.
- Knowing the initial conditions and recurrence relation, we can compute the terms of the sequence, one by one.
- In this case, we find that

$$
\begin{aligned}
& f_{2}=f_{1}+f_{0}=1+1=2 \\
& f_{3}=f_{2}+f_{1}=2+1=3 \\
& f_{4}=f_{3}+f_{2}=3+2=5
\end{aligned}
$$

and so on.

Example 2

- The sequence given by the explicit formula $a_{n}=n(n-1) / 2$ satisfies the first-order recurrence relation $a_{n}=a_{n-1}+(n-1)$ for all $n \geqslant 1$, since we have

Example 2

- The sequence given by the explicit formula $a_{n}=n(n-1) / 2$ satisfies the first-order recurrence relation $a_{n}=a_{n-1}+(n-1)$ for all $n \geqslant 1$, since we have
$a_{n-1}+(n-1)=\frac{(n-1)(n-2)}{2}+(n-1)=(n-1) \cdot \frac{n}{2}=a_{n}$

Example 2

- The sequence given by the explicit formula $a_{n}=n(n-1) / 2$ satisfies the first-order recurrence relation $a_{n}=a_{n-1}+(n-1)$ for all $n \geqslant 1$, since we have
$a_{n-1}+(n-1)=\frac{(n-1)(n-2)}{2}+(n-1)=(n-1) \cdot \frac{n}{2}=a_{n}$
- The initial condition here is that $a_{0}=0$.

Example 3

- The sequence $1,2,4,8,16, \ldots$ satisfies the recurrence relation $a_{n}=a_{n-1}+a_{n-2}+\ldots+a_{1}+a_{0}+1$.

In other words, each term in this sequence is the sum of all the previous terms, plus 1

Example 3

- The sequence $1,2,4,8,16, \ldots$ satisfies the recurrence relation $a_{n}=a_{n-1}+a_{n-2}+\ldots+a_{1}+a_{0}+1$.
- In other words, each term in this sequence is the sum of all the previous terms, plus 1.

Example 3

- The sequence $1,2,4,8,16, \ldots$ satisfies the recurrence relation $a_{n}=a_{n-1}+a_{n-2}+\ldots+a_{1}+a_{0}+1$.
- In other words, each term in this sequence is the sum of all the previous terms, plus 1.
- It also satisfies other recurrence relations, such as the first order relation $a_{n}=2 a_{n-1}$ and the third order relation $a_{n}=a_{n-1}+4 a_{n-3}$.
- Our main goal in this section is to set up recurrence relations for solving problems.

Typically, we are given a sequence defined in concrete, not
algebraic, terms; we want to write down a recurrence relation that the sequence must satisfy.

- Our main goal in this section is to set up recurrence relations for solving problems.
- Typically, we are given a sequence defined in concrete, not algebraic, terms; we want to write down a recurrence relation that the sequence must satisfy.

Example 4

Let b_{n} be the number of bit strings of length n containing a pair of consecutive 0's. Find a recurrence relation and initial conditions for the sequence b_{n}.

Example 4

Let b_{n} be the number of bit strings of length n containing a pair of consecutive 0's. Find a recurrence relation and initial conditions for the sequence b_{n}.

Solution

Example 4

Let b_{n} be the number of bit strings of length n containing a pair of consecutive 0's. Find a recurrence relation and initial conditions for the sequence b_{n}.

Solution

- There are three mutually exclusive ways that such a sequence might start: 1, 01, and 00.

Example 4

Let b_{n} be the number of bit strings of length n containing a pair of consecutive 0's. Find a recurrence relation and initial conditions for the sequence b_{n}.

Solution

- There are three mutually exclusive ways that such a sequence might start: 1, 01, and 00.
- If it starts with a 1 , it must continue with a bit string of length $n-1$ containing a pair of consecutive 0 's, and there are b_{n-1} of these.

Example 4

Let b_{n} be the number of bit strings of length n containing a pair of consecutive 0's. Find a recurrence relation and initial conditions for the sequence b_{n}.

Solution

- There are three mutually exclusive ways that such a sequence might start: 1, 01, and 00.
- If it starts with a 1 , it must continue with a bit string of length $n-1$ containing a pair of consecutive 0 's, and there are b_{n-1} of these.
- If it starts with 01, it must continue with a bit string of length $n-2$ containing a pair of consecutive 0's, and there are b_{n-2} of these.

Example 4

- Finally, if it starts 00, it can be followed by any bit string of length $n-2$ (since a pair of consecutive 0's is already present), and there are 2^{n-2} of these.

Therefore, the desired recurrence relation is

Example 4

- Finally, if it starts 00, it can be followed by any bit string of length $n-2$ (since a pair of consecutive 0's is already present), and there are 2^{n-2} of these.
- Therefore, the desired recurrence relation is $b_{n}=b_{n-1}+b_{n-2}+2^{n-2}$.

Example 4

- Finally, if it starts 00, it can be followed by any bit string of length $n-2$ (since a pair of consecutive 0's is already present), and there are 2^{n-2} of these.
- Therefore, the desired recurrence relation is $b_{n}=b_{n-1}+b_{n-2}+2^{n-2}$.
- Clearly, the initial conditions are $b_{0}=b_{1}=0$, since no strings of length less than 2 can contain 00 as a substring.

Example 4

- With this recurrence relation, we can compute the terms in the sequence.

Example 4

- With this recurrence relation, we can compute the terms in the sequence.
- We have

$$
b_{2}=b_{1}+b_{0}+2^{0}=0+0+1=1
$$

Example 4

- With this recurrence relation, we can compute the terms in the sequence.
- We have

$$
\begin{aligned}
& b_{2}=b_{1}+b_{0}+2^{0}=0+0+1=1 \\
& b_{3}=b_{2}+b_{1}+2^{1}=1+0+2=3
\end{aligned}
$$

Example 4

- With this recurrence relation, we can compute the terms in the sequence.
- We have

$$
\begin{aligned}
& b_{2}=b_{1}+b_{0}+2^{0}=0+0+1=1 \\
& b_{3}=b_{2}+b_{1}+2^{1}=1+0+2=3 \\
& b_{4}=b_{3}+b_{2}+2^{2}=3+1+4=8
\end{aligned}
$$

Example 4

- With this recurrence relation, we can compute the terms in the sequence.
- We have

$$
\begin{aligned}
& b_{2}=b_{1}+b_{0}+2^{0}=0+0+1=1 \\
& b_{3}=b_{2}+b_{1}+2^{1}=1+0+2=3 \\
& b_{4}=b_{3}+b_{2}+2^{2}=3+1+4=8 \\
& b_{5}=b_{4}+b_{3}+2^{3}=8+3+8=19
\end{aligned}
$$

Example 4

- With this recurrence relation, we can compute the terms in the sequence.
- We have

$$
\begin{aligned}
& b_{2}=b_{1}+b_{0}+2^{0}=0+0+1=1 \\
& b_{3}=b_{2}+b_{1}+2^{1}=1+0+2=3 \\
& b_{4}=b_{3}+b_{2}+2^{2}=3+1+4=8 \\
& b_{5}=b_{4}+b_{3}+2^{3}=8+3+8=19 \\
& b_{t} 6=b_{5}+b_{4}+2^{4}=19+8+16=43
\end{aligned}
$$

Example 4

- With this recurrence relation, we can compute the terms in the sequence.
- We have

$$
\begin{aligned}
& b_{2}=b_{1}+b_{0}+2^{0}=0+0+1=1 \\
& b_{3}=b_{2}+b_{1}+2^{1}=1+0+2=3 \\
& b_{4}=b_{3}+b_{2}+2^{2}=3+1+4=8 \\
& b_{5}=b_{4}+b_{3}+2^{3}=8+3+8=19 \\
& b_{t} 6=b_{5}+b_{4}+2^{4}=19+8+16=43 \\
& b_{7}=b_{6}+b_{5}+2^{5}=43+19+32=94
\end{aligned}
$$

Example 4

- With this recurrence relation, we can compute the terms in the sequence.
- We have

$$
\begin{aligned}
& b_{2}=b_{1}+b_{0}+2^{0}=0+0+1=1 \\
& b_{3}=b_{2}+b_{1}+2^{1}=1+0+2=3 \\
& b_{4}=b_{3}+b_{2}+2^{2}=3+1+4=8 \\
& b_{5}=b_{4}+b_{3}+2^{3}=8+3+8=19 \\
& b_{t} 6=b_{5}+b_{4}+2^{4}=19+8+16=43 \\
& b_{7}=b_{6}+b_{5}+2^{5}=43+19+32=94 \\
& b_{8}=b_{7}+b_{6}+2^{6}=94+43+64=201
\end{aligned}
$$

and so on.

- Unfortunately, there is no algorithm to tell us how to analyze an applied problem, such as the ones we have been considering here, to come up with a recurrence relation.
involves one or more false starts.
- Unfortunately, there is no algorithm to tell us how to analyze an applied problem, such as the ones we have been considering here, to come up with a recurrence relation.
- A successful analysis often takes a bit of cleverness and usually involves one or more false starts.
- Unfortunately, there is no algorithm to tell us how to analyze an applied problem, such as the ones we have been considering here, to come up with a recurrence relation.
- A successful analysis often takes a bit of cleverness and usually involves one or more false starts.
- In the rest of this section we turn to problems that are somewhat more involved than the ones we have looked at so far.

Recurrence Relation not in Closed Form

- Let $p(n)$ be the number of partitions of a set with n elements. $(p(n)$ is also the number of different equivalence relations on a set with n elements.)

partitions of larger ones.

Recurrence Relation not in Closed Form

- Let $p(n)$ be the number of partitions of a set with n elements. $(p(n)$ is also the number of different equivalence relations on a set with n elements.)
- The numbers $p(n)$ are known as the Bell numbers, after the American mathematician E. T. Bell.

Recurrence Relation not in Closed Form

- Let $p(n)$ be the number of partitions of a set with n elements. $(p(n)$ is also the number of different equivalence relations on a set with n elements.)
- The numbers $p(n)$ are known as the Bell numbers, after the American mathematician E. T. Bell.
- For example, $p(3)=5$, since the partitions of $\{1,2,3\}$ are $\{\{1,2,3\}\},\{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\},\{\{2,3\},\{1\}\}$, and $\{\{1\},\{2\},\{3\}\}$. In order to get a recurrence relation for $p(n)$, we need to see how partitions of smaller sets help to determine partitions of larger ones.
- We count the partitions of $\{1,2, . ., n\}$ as follows. The element n must be in one of the sets of the partition. - It can be in a set by itself, or it can have one or more (possibly even all) of the other elements of $\{1,2, n\}$ with it.
- We count the partitions of $\{1,2, . ., n\}$ as follows.
- The element n must be in one of the sets of the partition.

n in a partition of $\{1,2, \ldots, n\}$
- We count the partitions of $\{1,2, . ., n\}$ as follows.
- The element n must be in one of the sets of the partition.
- It can be in a set by itself, or it can have one or more (possibly even all) of the other elements of $\{1,2, n\}$ with it.
- We count the partitions of $\{1,2, . ., n\}$ as follows.
- The element n must be in one of the sets of the partition.
- It can be in a set by itself, or it can have one or more (possibly even all) of the other elements of $\{1,2, n\}$ with it.
- Let k be the number of elements other than n in the same set with n in a partition of $\{1,2, \ldots, n\}$.
since only 2 is in the same set as 3 .
- We count the partitions of $\{1,2, . ., n\}$ as follows.
- The element n must be in one of the sets of the partition.
- It can be in a set by itself, or it can have one or more (possibly even all) of the other elements of $\{1,2, n\}$ with it.
- Let k be the number of elements other than n in the same set with n in a partition of $\{1,2, \ldots, n\}$.
- For example, if $n=3$, then the partition $\{\{2,3\},\{1\}\}$ has $k=1$ since only 2 is in the same set as 3 .
- Note that $1 \leqslant k \leqslant n-1$.
- In order to specify a partition with this value of k, we can first decide which k elements are to be in the same set as n (and we can do this in $C(n-1, k)$ ways), and then decide how to partition the remaining elements of $\{1,2, \ldots, n\}$ (and we can do this in $p(n-k-1)$ ways, since there are $n-k-1$ elements left to be partitioned).
- Therefore, by the multiplication principle there are $C(n-1, k) p(n-k-1)$ partitions of $\{1,2 ., . . n\}$ in which exactly k elements are in the same set as n.
- Note that $1 \leqslant k \leqslant n-1$.
- In order to specify a partition with this value of k, we can first decide which k elements are to be in the same set as n (and we can do this in $C(n-1, k)$ ways), and then decide how to partition the remaining elements of $\{1,2, \ldots, n\}$ (and we can do this in $p(n-k-1)$ ways, since there are $n-k-1$ elements left to be partitioned).
- Note that $1 \leqslant k \leqslant n-1$.
- In order to specify a partition with this value of k, we can first decide which k elements are to be in the same set as n (and we can do this in $C(n-1, k)$ ways), and then decide how to partition the remaining elements of $\{1,2, \ldots, n\}$ (and we can do this in $p(n-k-1)$ ways, since there are $n-k-1$ elements left to be partitioned).
- Therefore, by the multiplication principle there are $C(n-1, k) p(n-k-1)$ partitions of $\{1,2 ., . . n\}$ in which exactly k elements are in the same set as n.
- Finally, by the addition principle, the total number of partitions of $\{1,2, \ldots n\}$ is given by

$$
P(n)=\sum_{k=0}^{n-1} C(n-1, k) p(n-k-1) .
$$

- Finally, by the addition principle, the total number of partitions of $\{1,2, \ldots n\}$ is given by

$$
P(n)=\sum_{k=0}^{n-1} C(n-1, k) p(n-k-1) .
$$

- This formula is our recurrence relation; it specifies $p(n)$ in terms of the numbers $p(n-k-1)$, all of which have arguments smaller than n (since $k \geqslant 0$). The only initial condition needed is $p(0)=1$, reflecting the fact that the empty set is the only partition of the empty set.
- Finally, by the addition principle, the total number of partitions of $\{1,2, \ldots n\}$ is given by

$$
P(n)=\sum_{k=0}^{n-1} C(n-1, k) p(n-k-1) .
$$

- This formula is our recurrence relation; it specifies $p(n)$ in terms of the numbers $p(n-k-1)$, all of which have arguments smaller than n (since $k \geqslant 0$). The only initial condition needed is $p(0)=1$, reflecting the fact that the empty set is the only partition of the empty set.
- Note that this recurrence relation is not of a fixed order, as were most of the recurrence relations we considered earlier in this section.
- Finally, by the addition principle, the total number of partitions of $\{1,2, \ldots n\}$ is given by

$$
P(n)=\sum_{k=0}^{n-1} C(n-1, k) p(n-k-1) .
$$

- This formula is our recurrence relation; it specifies $p(n)$ in terms of the numbers $p(n-k-1)$, all of which have arguments smaller than n (since $k \geqslant 0$). The only initial condition needed is $p(0)=1$, reflecting the fact that the empty set is the only partition of the empty set.
- Note that this recurrence relation is not of a fixed order, as were most of the recurrence relations we considered earlier in this section.
- Instead, the recurrence relation expresses $p(n)$ as a function of all the numbers $p(0), p(1), \ldots, p(n-1)$ (as well as n).

Example

Find the number of partitions of a set with five elements.

Example

Find the number of partitions of a set with five elements.

Solution

Example

Find the number of partitions of a set with five elements.

Solution

- We need to compute $p(5)$, and we can do so if we first compute $p(0), p(1), p(2), p(3)$, and $p(4)$.

Example

Find the number of partitions of a set with five elements.
Solution

- We need to compute $p(5)$, and we can do so if we first compute $p(0), p(1), p(2), p(3)$, and $p(4)$.
- The first three of these we may as well do directly, since they are so simple.
well.
Also, $p(2)=2$, since we can put
set together or in separate sets.

Example

Find the number of partitions of a set with five elements.
Solution

- We need to compute $p(5)$, and we can do so if we first compute $p(0), p(1), p(2), p(3)$, and $p(4)$.
- The first three of these we may as well do directly, since they are so simple.
- We already noted that $p(0)=1$, and it is clear that $p(1)=1$ as well.
set together or in separate sets.

Example

Find the number of partitions of a set with five elements.
Solution

- We need to compute $p(5)$, and we can do so if we first compute $p(0), p(1), p(2), p(3)$, and $p(4)$.
- The first three of these we may as well do directly, since they are so simple.
- We already noted that $p(0)=1$, and it is clear that $p(1)=1$ as well.
- Also, $p(2)=2$, since we can put the two elements either in one set together or in separate sets.

Example

Find the number of partitions of a set with five elements.
Solution

- We need to compute $p(5)$, and we can do so if we first compute $p(0), p(1), p(2), p(3)$, and $p(4)$.
- The first three of these we may as well do directly, since they are so simple.
- We already noted that $p(0)=1$, and it is clear that $p(1)=1$ as well.
- Also, $p(2)=2$, since we can put the two elements either in one set together or in separate sets.
- Similarly $p(3)=5$ several paragraphs above.
- To compute $p(4)$ we use the recurrence relation:

$$
\begin{aligned}
& P(4)=\sum_{k=0}^{3} C(3, k) p(3-k) \\
& =C(3,0) P(3)+C(3,1) P(2)+C(3,2) p(1)+C(3,3) p(0) \\
& =1 \cdot 5+3 \cdot 2+3 \cdot 1+1 \cdot 1=15
\end{aligned}
$$

- To compute $p(4)$ we use the recurrence relation:

$$
\begin{aligned}
& P(4)=\sum_{k=0}^{3} C(3, k) p(3-k) \\
& =C(3,0) P(3)+C(3,1) P(2)+C(3,2) p(1)+C(3,3) p(0) \\
& =1 \cdot 5+3 \cdot 2+3 \cdot 1+1 \cdot 1=15
\end{aligned}
$$

- Finally, we use the recurrence relation again to find $p(5)$:

$$
\begin{aligned}
& P(5)=\sum_{k=0}^{4} C(4, k) p(4-k) \\
& = \\
& C(4,0) P(4)+C(4,1) P(3)+C(4,2) p(2)+C(4,3) p(1)+C(4,4) p(0) \\
& =1 \cdot 15+4 \cdot 5+6 \cdot 2+4 \cdot 1+1 \cdot 1=52
\end{aligned}
$$

- Thus there are exactly 52 partitions of the set $(1,2,3,4,5)$ (or any other set with five elements).

It would have been difficult to be sure of obtaining the right answer bv trving to list these 52 partitions.

- Thus there are exactly 52 partitions of the set $(1,2,3,4,5)$ (or any other set with five elements).
- It would have been difficult to be sure of obtaining the right answer by trying to list these 52 partitions.

