MAT 122 2.0 Calculus

Dr. G.H.J. Lanel

Lecture 9

Outline

(1) The Derivative as a Function

(2) Other Notations

(3) Higher derivatives

Outline

(9) The Derivative as a Function

(2) Other Notations

(3) Higher derivatives

We considered the derivative of a function f at a fixed number a :

Here we change our point of view and let the number a vary. If we

 replace a in equation by a variable x, we obtainWe considered the derivative of a function f at a fixed number a:

$$
\begin{equation*}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \tag{1}
\end{equation*}
$$

We considered the derivative of a function f at a fixed number a :

$$
\begin{equation*}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \tag{1}
\end{equation*}
$$

Here we change our point of view and let the number a vary. If we replace a in equation by a variable x, we obtain

We considered the derivative of a function f at a fixed number a :

$$
\begin{equation*}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \tag{1}
\end{equation*}
$$

Here we change our point of view and let the number a vary. If we replace a in equation by a variable x, we obtain

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{2}
\end{equation*}
$$

- Given any number x for which this limit exists, we assign to x the number $f^{\prime}(x)$.

We know that the value of f^{\prime} at x, can be interpreted geometrically as the slope of the tangent line to the graph of f at the point

- Given any number x for which this limit exists, we assign to x the number $f^{\prime}(x)$.
- So we can regard f^{\prime} as a new function, called the derivative of f and defined by equation (2).

The function f^{\prime} is called the derivative of f because it has been derived from f by the limiting operation in equation (2)

- Given any number x for which this limit exists, we assign to x the number $f^{\prime}(x)$.
- So we can regard f^{\prime} as a new function, called the derivative of f and defined by equation (2).
- We know that the value of f^{\prime} at x, can be interpreted geometrically as the slope of the tangent line to the graph of f at the point $(x, f(x))$.
- Given any number x for which this limit exists, we assign to x the number $f^{\prime}(x)$.
- So we can regard f^{\prime} as a new function, called the derivative of f and defined by equation (2).
- We know that the value of f^{\prime} at x, can be interpreted geometrically as the slope of the tangent line to the graph of f at the point $(x, f(x))$.
- The function f^{\prime} is called the derivative of f because it has been derived from f by the limiting operation in equation (2).
- Given any number x for which this limit exists, we assign to x the number $f^{\prime}(x)$.
- So we can regard f^{\prime} as a new function, called the derivative of f and defined by equation (2).
- We know that the value of f^{\prime} at x, can be interpreted geometrically as the slope of the tangent line to the graph of f at the point $(x, f(x))$.
- The function f^{\prime} is called the derivative of f because it has been derived from f by the limiting operation in equation (2).
- The domain of f^{\prime} is the set $\left\{x \mid f^{\prime}(x)\right.$ exists $\}$ and may be smaller than the domain of f.

(a) $f(x)=\sqrt{x-1}$

(b) $f^{\prime}(x)=\frac{1}{2 \sqrt{x-1}}$

Sketch the graph of the derivative f^{\prime}.

(a)

- Tangents at A, B and C are horizontal, so the derivative is 0 there, and the graph of f^{\prime} crosses the x-axis at the points A^{\prime}, B^{\prime} and $C^{\prime} .$.
positive there. negative there.

(a)
- Tangents at A, B and C are horizontal, so the derivative is 0 there, and the graph of f^{\prime} crosses the x-axis at the points A^{\prime}, B^{\prime} and $C^{\prime} .$.
- Between A and B the tangents have positive slope, so $f^{\prime}(x)$ is positive there.
negative there.

(a)
- Tangents at A, B and C are horizontal, so the derivative is 0 there, and the graph of f^{\prime} crosses the x-axis at the points A^{\prime}, B^{\prime} and $C^{\prime} .$.
- Between A and B the tangents have positive slope, so $f^{\prime}(x)$ is positive there.
- But between B and C the tangents have negative slope, so $f^{\prime}(x)$ is negative there.

(a)

(b)

Outline

(1) The Derivative as a Function

(2) Other Notations

(3) Higher derivatives

If we use the traditional notation $y=f(x)$ to indicate that the independent variable is x and the dependent variable is y, then some common alternative notations for the derivative are as follows:

$$
f^{\prime}(X)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

If we use the traditional notation $y=f(x)$ to indicate that the independent variable is x and the dependent variable is y, then some common alternative notations for the derivative are as follows:

If we use the traditional notation $y=f(x)$ to indicate that the independent variable is x and the dependent variable is y, then some common alternative notations for the derivative are as follows:

$$
f^{\prime}(X)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

If we use the traditional notation $y=f(x)$ to indicate that the independent variable is x and the dependent variable is y, then some common alternative notations for the derivative are as follows:

$$
f^{\prime}(X)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

The symbols D and $\frac{d}{d x}$ are called differentiable operators because they indicate the operation of differentiation, which is the process of calculating a derivative.

Definition

A function f is differentiable at a if $f^{\prime}(a)$ exists. It is differentiable on an open interval (a, b) or (a, ∞) or $(-\infty, a)$ or $(-\infty, \infty)]$ if it is differentiable at every number in the interval.

Eg. $f(x)=|x|$.

Eg. $f(x)=|x|$.
If $x>0$, then $|x|=x$ and we can choose h small enough that $x+h>0$ and hence $|x+h|=x+h$. Therefore, for $x>0$ we have

Eg. $f(x)=|x|$.
If $x>0$, then $|x|=x$ and we can choose h small enough that $x+h>0$ and hence $|x+h|=x+h$. Therefore, for $x>0$ we have

Sol:

Eg. $f(x)=|x|$.
If $x>0$, then $|x|=x$ and we can choose h small enough that $x+h>0$ and hence $|x+h|=x+h$. Therefore, for $x>0$ we have

Sol:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \\
& =\lim _{h \rightarrow 0} 1 \\
& =1
\end{aligned}
$$

Eg. $f(x)=|x|$.
If $x>0$, then $|x|=x$ and we can choose h small enough that $x+h>0$ and hence $|x+h|=x+h$. Therefore, for $x>0$ we have

Sol:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \\
& =\lim _{h \rightarrow 0} 1 \\
& =1
\end{aligned}
$$

Eg. $f(x)=|x|$.
If $x>0$, then $|x|=x$ and we can choose h small enough that $x+h>0$ and hence $|x+h|=x+h$. Therefore, for $x>0$ we have

Sol:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \\
& =\lim _{h \rightarrow 0} 1 \\
& =1
\end{aligned}
$$

Eg. $f(x)=|x|$.
If $x>0$, then $|x|=x$ and we can choose h small enough that $x+h>0$ and hence $|x+h|=x+h$. Therefore, for $x>0$ we have

Sol:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \\
& =\lim _{h \rightarrow 0} 1 \\
& =1
\end{aligned}
$$

Eg. $f(x)=|x|$.
If $x>0$, then $|x|=x$ and we can choose h small enough that $x+h>0$ and hence $|x+h|=x+h$. Therefore, for $x>0$ we have

Sol:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \\
& =\lim _{h \rightarrow 0} 1 \\
& =1
\end{aligned}
$$

Eg. $f(x)=|x|$.
If $x>0$, then $|x|=x$ and we can choose h small enough that $x+h>0$ and hence $|x+h|=x+h$. Therefore, for $x>0$ we have

Sol:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \\
& =\lim _{h \rightarrow 0} 1 \\
& =1
\end{aligned}
$$

and so f is differentiable for any $x>0$.

Sol: Contd...

Similarly, for $x<0$ we have $|x|=-x$ and h can be chosen small enough that $x+h<0$ and so $|x+h|=-(x+h)$.

Sol: Contd...

Similarly, for $x<0$ we have $|x|=-x$ and h can be chosen small enough that $x+h<0$ and so $|x+h|=-(x+h)$.

Therefore, for $x<0$,

Sol: Contd...

Similarly, for $x<0$ we have $|x|=-x$ and h can be chosen small enough that $x+h<0$ and so $|x+h|=-(x+h)$.

Therefore, for $x<0$,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{-(x+h)-(-x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h} \\
& =\lim _{h \rightarrow 0}(-1) \\
& =-1
\end{aligned}
$$

Sol: Contd...

Similarly, for $x<0$ we have $|x|=-x$ and h can be chosen small enough that $x+h<0$ and so $|x+h|=-(x+h)$.

Therefore, for $x<0$,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{-(x+h)-(-x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h} \\
& =\lim _{h \rightarrow 0}(-1) \\
& =-1
\end{aligned}
$$

Sol: Contd...

Similarly, for $x<0$ we have $|x|=-x$ and h can be chosen small enough that $x+h<0$ and so $|x+h|=-(x+h)$.

Therefore, for $x<0$,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{-(x+h)-(-x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h} \\
& =\lim _{h \rightarrow 0}(-1) \\
& =-1
\end{aligned}
$$

Sol: Contd...

Similarly, for $x<0$ we have $|x|=-x$ and h can be chosen small enough that $x+h<0$ and so $|x+h|=-(x+h)$.

Therefore, for $x<0$,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{-(x+h)-(-x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h} \\
& =\lim _{h \rightarrow 0}(-1) \\
& =-1
\end{aligned}
$$

Sol: Contd...

Similarly, for $x<0$ we have $|x|=-x$ and h can be chosen small enough that $x+h<0$ and so $|x+h|=-(x+h)$.

Therefore, for $x<0$,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h} \\
& =\lim _{h \rightarrow 0} \frac{-(x+h)-(-x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h} \\
& =\lim _{h \rightarrow 0}(-1) \\
& =-1
\end{aligned}
$$

For $x=0$ we have to investigate

For $x=0$ we have to investigate

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h} \quad \text { (if it exists) }
\end{aligned}
$$

For $x=0$ we have to investigate

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h} \quad \text { (if it exists) }
\end{aligned}
$$

For $x=0$ we have to investigate

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h} \quad \text { (if it exists) }
\end{aligned}
$$

Let's compute the left and right limits separately:

For $x=0$ we have to investigate

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h} \quad \text { (if it exists) }
\end{aligned}
$$

Let's compute the left and right limits separately:

$$
\lim _{h \rightarrow 0^{+}} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{+}} 1=1
$$

For $x=0$ we have to investigate

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h} \quad \text { (if it exists) }
\end{aligned}
$$

Let's compute the left and right limits separately:

$$
\lim _{h \rightarrow 0^{+}} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{+}} 1=1
$$

and

For $x=0$ we have to investigate

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h} \quad \text { (if it exists) }
\end{aligned}
$$

Let's compute the left and right limits separately:

$$
\lim _{h \rightarrow 0^{+}} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{+}} 1=1
$$

and

$$
\lim _{h \rightarrow 0^{-}} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}(-1)=-1
$$

For $x=0$ we have to investigate

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h} \quad \text { (if it exists) }
\end{aligned}
$$

Let's compute the left and right limits separately:

$$
\lim _{h \rightarrow 0^{+}} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{+}} 1=1
$$

and

$$
\lim _{h \rightarrow 0^{-}} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}(-1)=-1
$$

Since these limits are different, $f^{\prime}(0)$ does not exist. Thus, f is differentiable at all x except 0 .

Note: The left-hand and right-hand derivatives of f at a are defined by

Note: The left-hand and right-hand derivatives of f at a are defined by

Note: The left-hand and right-hand derivatives of f at a are defined by

$$
f_{-}^{\prime}(a)=\lim _{h \rightarrow 0, h>0} \frac{f(a)-f(a-h)}{h}
$$

Note: The left-hand and right-hand derivatives of f at a are defined by

$$
f_{-}^{\prime}(a)=\lim _{h \rightarrow 0, h>0} \frac{f(a)-f(a-h)}{h}
$$

and

Note: The left-hand and right-hand derivatives of f at a are defined by

$$
f_{-}^{\prime}(a)=\lim _{h \rightarrow 0, h>0} \frac{f(a)-f(a-h)}{h}
$$

and

$$
f_{+}^{\prime}(a)=\lim _{h \rightarrow 0, h>0} \frac{f(a+h)-f(a)}{h}
$$

Note: The left-hand and right-hand derivatives of f at a are defined by

$$
f_{-}^{\prime}(a)=\lim _{h \rightarrow 0, h>0} \frac{f(a)-f(a-h)}{h}
$$

and

$$
f_{+}^{\prime}(a)=\lim _{h \rightarrow 0, h>0} \frac{f(a+h)-f(a)}{h}
$$

if there limits exist. Then $f^{\prime}(a)$ exists iff these one-sided derivatives are exist and equal.

Ex.

Find $f_{-}^{\prime}(4)$ and $f_{-}^{\prime}(4)$ for the function

Ex.
(1) Find $f_{-}^{\prime}(4)$ and $f_{+}^{\prime}(4)$ for the function

Ex.

(1) Find $f_{-}^{\prime}(4)$ and $f_{+}^{\prime}(4)$ for the function

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ 5-x & \text { if } 0<x<4 \\ \frac{1}{5-x} & \text { if } x \geq 4\end{cases}
$$

Ex.

(1) Find $f_{-}^{\prime}(4)$ and $f_{+}^{\prime}(4)$ for the function

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ 5-x & \text { if } 0<x<4 \\ \frac{1}{5-x} & \text { if } x \geq 4\end{cases}
$$

(2) Sketch the graph of f.

[^0]
Ex.

(1) Find $f_{-}^{\prime}(4)$ and $f_{+}^{\prime}(4)$ for the function

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ 5-x & \text { if } 0<x<4 \\ \frac{1}{5-x} & \text { if } x \geq 4\end{cases}
$$

(2) Sketch the graph of f.
(3) Where is f discontinuous?

Ex.

(1) Find $f_{-}^{\prime}(4)$ and $f_{+}^{\prime}(4)$ for the function

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ 5-x & \text { if } 0<x<4 \\ \frac{1}{5-x} & \text { if } x \geq 4\end{cases}
$$

(2) Sketch the graph of f.
(3) Where is f discontinuous?
(4) Where is f not differentiable?

Theorem

If f is differentiable at a, then f is continuous at a.

Theorem
If f is differentiable at a, then f is continuous at a.

Proof :

Theorem

If f is differentiable at a, then f is continuous at a.

Proof :

$$
\begin{aligned}
f(x)-f(a) & =\frac{f(x)-f(a)}{x-a}(x-a) ;(x \neq a) \\
\lim _{x \rightarrow a}[f(x)-f(a)] & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}(x-a) \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \lim _{x \rightarrow a}(x-a) \\
& =f^{\prime}(a) \cdot 0 \\
& =0
\end{aligned}
$$

Theorem

If f is differentiable at a, then f is continuous at a.

Proof :

$$
\begin{aligned}
f(x)-f(a) & =\frac{f(x)-f(a)}{x-a}(x-a) ;(x \neq a) \\
\lim _{x \rightarrow a}[f(x)-f(a)] & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}(x-a) \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \lim _{x \rightarrow a}(x-a) \\
& =f^{\prime}(a) \cdot 0 \\
& =0
\end{aligned}
$$

Theorem

If f is differentiable at a, then f is continuous at a.

Proof :

$$
\begin{aligned}
f(x)-f(a) & =\frac{f(x)-f(a)}{x-a}(x-a) ;(x \neq a) \\
\lim _{x \rightarrow a}[f(x)-f(a)] & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}(x-a) \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \lim _{x \rightarrow a}(x-a) \\
& =f^{\prime}(a) \cdot 0 \\
& =0
\end{aligned}
$$

Theorem
If f is differentiable at a, then f is continuous at a.

Proof :

$$
\begin{aligned}
f(x)-f(a) & =\frac{f(x)-f(a)}{x-a}(x-a) ;(x \neq a) \\
\lim _{x \rightarrow a}[f(x)-f(a)] & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}(x-a) \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \lim _{x \rightarrow a}(x-a) \\
& =f^{\prime}(a) \cdot 0 \\
& =0
\end{aligned}
$$

Theorem
If f is differentiable at a, then f is continuous at a.

Proof :

$$
\begin{aligned}
f(x)-f(a) & =\frac{f(x)-f(a)}{x-a}(x-a) ;(x \neq a) \\
\lim _{x \rightarrow a}[f(x)-f(a)] & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}(x-a) \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \lim _{x \rightarrow a}(x-a) \\
& =f^{\prime}(a) \cdot 0 \\
& =0
\end{aligned}
$$

Theorem

If f is differentiable at a, then f is continuous at a.

Proof :

$$
\begin{aligned}
f(x)-f(a) & =\frac{f(x)-f(a)}{x-a}(x-a) ;(x \neq a) \\
\lim _{x \rightarrow a}[f(x)-f(a)] & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}(x-a) \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \lim _{x \rightarrow a}(x-a) \\
& =f^{\prime}(a) \cdot 0 \\
& =0
\end{aligned}
$$

$\Rightarrow \lim _{x \rightarrow a} f(x)=f(a)$. Therefore, f is continuous at a.

Note:

For instance, the function $f(x)=x$ is continuous at 0 because

Note:

For instance, the function $f(x)=|x|$ is continuous at 0 because

But in Example we showed that f is not differentiable at 0 .

Note:

For instance, the function $f(x)=|x|$ is continuous at 0 because

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}|x|=0=f(0)
$$

But in Example we showed that f is not differentiable at 0 .

Note:

For instance, the function $f(x)=|x|$ is continuous at 0 because

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}|x|=0=f(0)
$$

But in Example we showed that f is not differentiable at 0 .

Outline

(1) The Derivative as a Function

(2) Other Notations

(3) Higher derivatives

Second derivative

If f is a differentiable function, then its derivative f^{\prime} is also a function, so f^{\prime} may have a derivative of its own, denoted by $\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}$. This new function $f^{\prime \prime}$ is called the second derivative of because it is the derivative of the derivative of f. We write the second derivative of $y=f(x)$ as

Second derivative

If f is a differentiable function, then its derivative f^{\prime} is also a function, so f^{\prime} may have a derivative of its own, denoted by $\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}$. This new function $f^{\prime \prime}$ is called the second derivative of because it is the derivative of the derivative of f. We write the second derivative of $y=f(x)$ as

$$
\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}
$$

Example:

If $f(x)=x^{3}-x$, find an interpret $f^{\prime \prime}(x)$.

Solution:

Example:

If $f(x)=x^{3}-x$, find an interpret $f^{\prime \prime}(x)$.

Solution:

Example:

If $f(x)=x^{3}-x$, find an interpret $f^{\prime \prime}(x)$.

Solution:

Example:

If $f(x)=x^{3}-x$, find an interpret $f^{\prime \prime}(x)$.

Solution:

first derivative is $f^{\prime}(x)=3 x^{2}-1$. So the second derivative is;
$f^{\prime \prime}(x)=\left(f^{\prime}\right)^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{\left[3 *(x+h)^{2}-1\right]-\left[3 x^{2}-1\right]}{h}=$ $\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h 3 h^{2}-1-3 x^{2}+1}{h}=\lim _{h \rightarrow 0} \frac{6 x+3 h}{h}=6 x$

In general, we can interpret a second derivative as a rate of change of a rate of change. The most familiar example of this is acceleration, which we define as follows. If $s=s(t)$ is the position function of an object that moves in a straight line, we know that its first derivative represents the velocity of the object as a function of time:

$$
v(t)=s^{\prime}(t)=\frac{d s}{d t}
$$

The instantaneous rate of change of velocity with respect to time is called the acceleration $a(t)$ of the object. Thus the acceleration function is the derivative of the velocity function and is therefore the second derivative of the position function:

$$
a(t)=v^{\prime}(t)=s^{\prime \prime}(t)
$$

In general, we can interpret a second derivative as a rate of change of a rate of change. The most familiar example of this is acceleration, which we define as follows. If $s=s(t)$ is the position function of an object that moves in a straight line, we know that its first derivative represents the velocity of the object as a function of time:

$$
v(t)=s^{\prime}(t)=\frac{d s}{d t}
$$

The instantaneous rate of change of velocity with respect to time is called the acceleration $a(t)$ of the object. Thus the acceleration function is the derivative of the velocity function and is therefore the second derivative of the position function:

$$
a(t)=v^{\prime}(t)=s^{\prime \prime}(t)
$$

Third derivative

Third derivative is the derivative of the second derivative: $f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}$. So $f^{\prime \prime \prime}(x)$ can be interpreted as the slope of the curve $y=f^{\prime \prime}(x)$ or as the rate of change of $f^{\prime \prime}(x)$. If $y=f(x)$, then alternative notations for the third derivative are,

The process can be continued. The fourth derivative $f^{\prime \prime \prime \prime}$ is usually denoted by $f^{(4)}$. In general, the nth derivative of is denoted by $f^{(n)}$ and is obtained from f by differentiating n times. If $y=f(x)$, we write

Third derivative

Third derivative is the derivative of the second derivative: $f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}$. So $f^{\prime \prime \prime}(x)$ can be interpreted as the slope of the curve $y=f^{\prime \prime}(x)$ or as the rate of change of $f^{\prime \prime}(x)$. If $y=f(x)$, then alternative notations for the third derivative are,

$$
y^{\prime \prime \prime}=f^{\prime \prime \prime}(x)=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}
$$

The process can be continued. The fourth derivative $f^{\prime \prime \prime \prime}$ is usually denoted by $f^{(4)}$. In general, the nth derivative of is denoted by $f^{(n)}$ and is obtained from f by differentiating n times. If $y=f(x)$, we write

$$
y^{(n)}=f^{(n)}(x)=\frac{d^{n}(y)}{d x^{n}}
$$

Example:

If $f(x)=x^{3}-x$, find $f^{\prime \prime \prime}(x)$ and $f^{(4)}(x)$.

Example:

Example:

If $f(x)=x^{3}-x$, find $f^{\prime \prime \prime}(x)$ and $f^{(4)}(x)$.

[^0]: (4) Where is f not differentiable?

