MAT 122 2.0 Calculus

Dr. G.H.J. Lanel

Lecture 9

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

◆ ■ ▶ ■ のへの Lecture 9 1/25

イロト イヨト イヨト イヨト

2 Other Notations

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

2 Other Notations

Dr. G.H.J. Lanel (USJP)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Here we change our point of view and let the number a vary. If we replace a in equation by a variable x, we obtain

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
(2)

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Here we change our point of view and let the number a vary. If we replace a in equation by a variable x, we obtain

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
(2)

Dr. G.H.J. Lanel (USJP)

(1)

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \tag{1}$$

Here we change our point of view and let the number a vary. If we replace a in equation by a variable x, we obtain

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
(2)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \tag{1}$$

Here we change our point of view and let the number *a* vary. If we replace *a* in equation by a variable *x*, we obtain

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (2)

Dr. G.H.J. Lanel (USJP)

- Given any number x for which this limit exists, we assign to x the number f'(x).
- So we can regard *f*['] as a new function, called the derivative of *f* and defined by equation (2).
- We know that the value of f' at x, can be interpreted geometrically as the slope of the tangent line to the graph of f at the point (x, f(x)).
- The function *f*′ is called the derivative of *f* because it has been derived from *f* by the limiting operation in equation (2).
- The domain of *f'* is the set {*x*|*f'*(*x*) *exists*} and may be smaller than the domain of *f*.

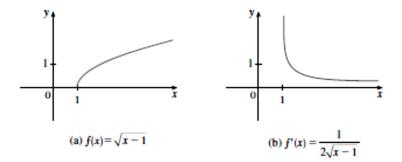
- Given any number x for which this limit exists, we assign to x the number f'(x).
- So we can regard f' as a new function, called the derivative of f and defined by equation (2).
- We know that the value of f' at x, can be interpreted geometrically as the slope of the tangent line to the graph of f at the point (x, f(x)).
- The function *f'* is called the derivative of *f* because it has been derived from *f* by the limiting operation in equation (2).
- The domain of *f'* is the set {*x*|*f'*(*x*) *exists*} and may be smaller than the domain of *f*.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Given any number x for which this limit exists, we assign to x the number f'(x).
- So we can regard f' as a new function, called the derivative of f and defined by equation (2).
- We know that the value of f' at x, can be interpreted geometrically as the slope of the tangent line to the graph of f at the point (x, f(x)).
- The function *f*′ is called the derivative of *f* because it has been derived from *f* by the limiting operation in equation (2).
- The domain of *f'* is the set {*x*|*f'*(*x*) *exists*} and may be smaller than the domain of *f*.

- Given any number x for which this limit exists, we assign to x the number f'(x).
- So we can regard f' as a new function, called the derivative of f and defined by equation (2).
- We know that the value of f' at x, can be interpreted geometrically as the slope of the tangent line to the graph of f at the point (x, f(x)).
- The function *f'* is called the derivative of *f* because it has been derived from *f* by the limiting operation in equation (2).
- The domain of *f'* is the set {*x*|*f'*(*x*) *exists*} and may be smaller than the domain of *f*.

- Given any number x for which this limit exists, we assign to x the number f'(x).
- So we can regard f' as a new function, called the derivative of f and defined by equation (2).
- We know that the value of f' at x, can be interpreted geometrically as the slope of the tangent line to the graph of f at the point (x, f(x)).
- The function *f'* is called the derivative of *f* because it has been derived from *f* by the limiting operation in equation (2).
- The domain of *f'* is the set {*x*|*f'*(*x*) *exists*} and may be smaller than the domain of *f*.

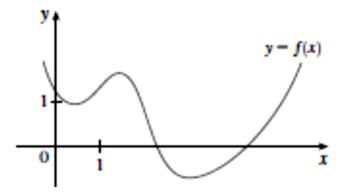


Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

● 王 • つへで
Lecture 9 6 / 25

イロト イヨト イヨト イヨト

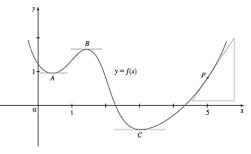


Sketch the graph of the derivative f'.

Dr. G.H.J. Lanel (USJP)

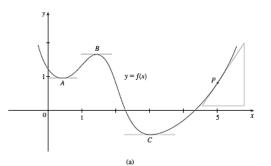
MAT 122 2.0 Calculus

イロト イヨト イヨト イヨト

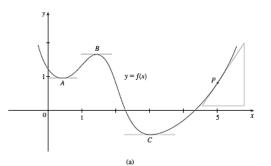


(a)

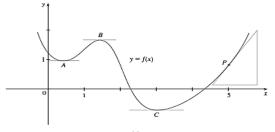
- Tangents at *A*, *B* and *C* are horizontal, so the derivative is 0 there, and the graph of *f*' crosses the x-axis at the points *A*', *B*' and *C*'...
- Between A and B the tangents have positive slope, so f'(x) is positive there.
- But between *B* and *C* the tangents have negative slope, so f'(x) is negative there.



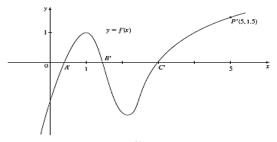
- Tangents at *A*, *B* and *C* are horizontal, so the derivative is 0 there, and the graph of *f*' crosses the x-axis at the points *A*', *B*' and *C*'...
- Between A and B the tangents have positive slope, so f'(x) is positive there.
- But between *B* and *C* the tangents have negative slope, so f'(x) is negative there.



- Tangents at *A*, *B* and *C* are horizontal, so the derivative is 0 there, and the graph of *f*' crosses the x-axis at the points *A*', *B*' and *C*'...
- Between A and B the tangents have positive slope, so f'(x) is positive there.
- But between B and C the tangents have negative slope, so f'(x) is negative there.



(a)



(b)

Dr. G.H.J. Lanel (USJP)

Outline

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 9 10 / 25

$$f'(X) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$$

The symbols D and $\frac{d}{dx}$ are called differentiable operators because they indicate the operation of differentiation, which is the process of calculating a derivative.

イロト イヨト イヨト イヨト

$f'(X) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_xf(x)$

The symbols *D* and $\frac{d}{dx}$ are called differentiable operators because they indicate the operation of differentiation, which is the process of calculating a derivative.

$$f'(X) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$$

The symbols D and $\frac{d}{dx}$ are called differentiable operators because they indicate the operation of differentiation, which is the process of calculating a derivative.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$f'(X) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$$

The symbols *D* and $\frac{d}{dx}$ are called differentiable operators because they indicate the operation of differentiation, which is the process of calculating a derivative.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A function *f* is differentiable at *a* if f'(a) exists. It is differentiable on an open interval (a, b) [or (a, ∞) or $(-\infty, a)$ or $(-\infty, \infty)$] if it is differentiable at every number in the interval.

A > + = + + =

If x > 0, then |x| = x and we can choose *h* small enough that x + h > 0 and hence |x + h| = x + h. Therefore, for x > 0 we have **Sol:**

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{(x+h) - x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h}$$
$$= \lim_{h \to 0} 1$$
$$= 1$$

and so f is differentiable for any x > 0.

Dr. G.H.J. Lanel (USJP)

< 日 > < 同 > < 回 > < 回 > < 回 > <

If x > 0, then |x| = x and we can choose *h* small enough that x + h > 0 and hence |x + h| = x + h. Therefore, for x > 0 we have Sol:

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{(x+h) - x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h}$$
$$= \lim_{h \to 0} 1$$

and so f is differentiable for any x > 0.

Dr. G.H.J. Lanel (USJP)

If x > 0, then |x| = x and we can choose *h* small enough that x + h > 0 and hence |x + h| = x + h. Therefore, for x > 0 we have **Sol:**

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{(x+h) - x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h}$$
$$= \lim_{h \to 0} 1$$

and so f is differentiable for any x > 0.

Dr. G.H.J. Lanel (USJP)

If x > 0, then |x| = x and we can choose *h* small enough that x + h > 0 and hence |x + h| = x + h. Therefore, for x > 0 we have Sol:

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{(x+h) - x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h}$$
$$= \lim_{h \to 0} 1$$
$$= 1$$

and so f is differentiable for any x > 0.

If x > 0, then |x| = x and we can choose *h* small enough that x + h > 0 and hence |x + h| = x + h. Therefore, for x > 0 we have Sol:

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{(x+h) - x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h}$$
$$= \lim_{h \to 0} 1$$
$$= 1$$

and so f is differentiable for any x > 0.

If x > 0, then |x| = x and we can choose *h* small enough that x + h > 0 and hence |x + h| = x + h. Therefore, for x > 0 we have Sol:

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{(x+h) - x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h}$$
$$= \lim_{h \to 0} 1$$
$$= 1$$

and so f is differentiable for any x > 0.

If x > 0, then |x| = x and we can choose *h* small enough that x + h > 0 and hence |x + h| = x + h. Therefore, for x > 0 we have Sol:

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{(x+h) - x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h}$$
$$= \lim_{h \to 0} 1$$
$$= 1$$

and so f is differentiable for any x > 0.

Dr. G.H.J. Lanel (USJP)

If x > 0, then |x| = x and we can choose *h* small enough that x + h > 0 and hence |x + h| = x + h. Therefore, for x > 0 we have Sol:

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{(x+h) - x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h}$$
$$= \lim_{h \to 0} 1$$
$$= 1$$

and so f is differentiable for any x > 0.

Dr. G.H.J. Lanel (USJP)

If x > 0, then |x| = x and we can choose *h* small enough that x + h > 0 and hence |x + h| = x + h. Therefore, for x > 0 we have Sol:

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{(x+h) - x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h}$$
$$= \lim_{h \to 0} 1$$
$$= 1$$

and so *f* is differentiable for any x > 0.

イロト イヨト イヨト イヨト

Sol: Contd...

Similarly, for x < 0 we have |x| = -x and h can be chosen small enough that x + h < 0 and so |x + h| = -(x + h).

Therefore, for x < 0,

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{-(x+h) - (-x)}{h}$$
$$= \lim_{h \to 0} \frac{-h}{h}$$
$$= \lim_{h \to 0} (-1)$$

Dr. G.H.J. Lanel (USJP)

Sol: Contd...

Similarly, for x < 0 we have |x| = -x and h can be chosen small enough that x + h < 0 and so |x + h| = -(x + h).

Therefore, for x < 0,

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{-(x+h) - (-x)}{h}$$
$$= \lim_{h \to 0} \frac{-h}{h}$$
$$= \lim_{h \to 0} (-1)$$

Dr. G.H.J. Lanel (USJP)

Sol: Contd...

Similarly, for x < 0 we have |x| = -x and h can be chosen small enough that x + h < 0 and so |x + h| = -(x + h).

Therefore, for x < 0,

f

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{-(x+h) - (-x)}{h}$$
$$= \lim_{h \to 0} \frac{-h}{h}$$
$$= \lim_{h \to 0} (-1)$$
$$= -1$$

Dr. G.H.J. Lanel (USJP)

Similarly, for x < 0 we have |x| = -x and h can be chosen small enough that x + h < 0 and so |x + h| = -(x + h).

Therefore, for x < 0,

f

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{-(x+h) - (-x)}{h}$$
$$= \lim_{h \to 0} \frac{-h}{h}$$
$$= \lim_{h \to 0} (-1)$$
$$= -1$$

Dr. G.H.J. Lanel (USJP)

Similarly, for x < 0 we have |x| = -x and h can be chosen small enough that x + h < 0 and so |x + h| = -(x + h).

Therefore, for x < 0,

f

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{-(x+h) - (-x)}{h}$$
$$= \lim_{h \to 0} \frac{-h}{h}$$
$$= \lim_{h \to 0} (-1)$$
$$= -1$$

Dr. G.H.J. Lanel (USJP)

Similarly, for x < 0 we have |x| = -x and h can be chosen small enough that x + h < 0 and so |x + h| = -(x + h).

Therefore, for x < 0,

f

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{-(x+h) - (-x)}{h}$$
$$= \lim_{h \to 0} \frac{-h}{h}$$
$$= \lim_{h \to 0} (-1)$$
$$= -1$$

Dr. G.H.J. Lanel (USJP)

Similarly, for x < 0 we have |x| = -x and h can be chosen small enough that x + h < 0 and so |x + h| = -(x + h).

Therefore, for x < 0,

f

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{-(x+h) - (-x)}{h}$$
$$= \lim_{h \to 0} \frac{-h}{h}$$
$$= \lim_{h \to 0} (-1)$$
$$= -1$$

Dr. G.H.J. Lanel (USJP)

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

=
$$\lim_{h \to 0} \frac{|0+h| - |0|}{h}$$
 (if it exists)

Let's compute the left and right limits separately:

$$\lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1$$

$$\lim_{h \to 0^{-}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = \lim_{h \to 0^{-}} (-1) = -1$$

Since these limits are different, f'(0) does not exist. Thus, f is differentiable at all x except 0.

Dr. G.H.J. Lanel (USJP)

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$
$$= \lim_{h \to 0} \frac{|0+h| - |0|}{h} \quad \text{(if it exists)}$$

Let's compute the left and right limits separately:

$$\lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1$$

$$\lim_{h \to 0^{-}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = \lim_{h \to 0^{-}} (-1) = -1$$

Since these limits are different, f'(0) does not exist. Thus, f is differentiable at all x except 0.

Dr. G.H.J. Lanel (USJP)

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$
$$= \lim_{h \to 0} \frac{|0+h| - |0|}{h} \quad \text{(if it exists)}$$

Let's compute the left and right limits separately:

$$\lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1$$

$$\lim_{h \to 0^{-}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = \lim_{h \to 0^{-}} (-1) = -1$$

Since these limits are different, f'(0) does not exist. Thus, f is differentiable at all x except 0.

Dr. G.H.J. Lanel (USJP)

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$
$$= \lim_{h \to 0} \frac{|0+h| - |0|}{h} \quad \text{(if it exists)}$$

Let's compute the left and right limits separately:

$$\lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1$$

and
$$\lim_{h \to 0^-} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^-} \frac{|h|}{h} = \lim_{h \to 0^-} \frac{-h}{h} = \lim_{h \to 0^-} (-1) = -1$$

Since these limits are different, f'(0) does not exist. Thus, f is differentiable at all x except 0.

Dr. G.H.J. Lanel (USJP)

• • • • • • • • • • • • •

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$
$$= \lim_{h \to 0} \frac{|0+h| - |0|}{h} \quad \text{(if it exists)}$$

Let's compute the left and right limits separately:

$$\lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1$$
$$\lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{-h}{h} = \lim_{h \to 0^+} (-1) = \lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{-h}{h} = \lim_{h \to 0^+} (-1) = \lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{-h}{h} = \lim_{h \to 0^+} \frac{-h$$

Since these limits are different, f'(0) does not exist. Thus, f is differentiable at all x except 0.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 9 15 / 25

イロト イポト イヨト イヨト

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$
$$= \lim_{h \to 0} \frac{|0+h| - |0|}{h} \quad \text{(if it exists)}$$

Let's compute the left and right limits separately:

$$\lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1$$
$$\lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^-} \frac{|h|}{h} = \lim_{h \to 0^-} \frac{-h}{h} = \lim_{h \to 0^-} (-1) = \lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^-} \frac{-h}{h} = \lim_{h \to 0^+} (-1) = \lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{-h}{h} = \lim_{h \to 0^+} \frac{-h$$

Since these limits are different, f'(0) does not exist. Thus, f is differentiable at all x except 0.

Dr. G.H.J. Lanel (USJP)

and

イロト イヨト イヨト イヨト

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$
$$= \lim_{h \to 0} \frac{|0+h| - |0|}{h} \quad \text{(if it exists)}$$

Let's compute the left and right limits separately:

$$\lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1$$

$$\lim_{h \to 0^{-}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = \lim_{h \to 0^{-}} (-1) = -1$$

Since these limits are different, f'(0) does not exist. Thus, f is differentiable at all x except 0.

Dr. G.H.J. Lanel (USJP)

and

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$
$$= \lim_{h \to 0} \frac{|0+h| - |0|}{h} \quad \text{(if it exists)}$$

Let's compute the left and right limits separately:

$$\lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1$$

$$\lim_{h \to 0^{-}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = \lim_{h \to 0^{-}} (-1) = -1$$

Since these limits are different, f'(0) does not exist. Thus, *f* is differentiable at all *x* except 0.

Dr. G.H.J. Lanel (USJP)

and

Lecture 9 15 / 25

イロト イヨト イヨト イヨト

$$f'_{-}(a) = \lim_{h \to 0, h > 0} \frac{f(a) - f(a - h)}{h}$$

and

$$f'_+(a) = \lim_{h \to 0, h > 0} \frac{f(a+h) - f(a)}{h}$$

if there limits exist. Then f'(a) exists iff these one-sided derivatives are exist and equal.

$$f'_{-}(a) = \lim_{h \to 0, h > 0} \frac{f(a) - f(a - h)}{h}$$

and

$$f'_+(a) = \lim_{h \to 0, h > 0} \frac{f(a+h) - f(a)}{h}$$

if there limits exist. Then f'(a) exists iff these one-sided derivatives are exist and equal.

イロト イヨト イヨト イヨト

$$f'_{-}(a) = \lim_{h \to 0, h > 0} \frac{f(a) - f(a - h)}{h}$$

and

$$f'_+(a) = \lim_{h \to 0, h > 0} \frac{f(a+h) - f(a)}{h}$$

if there limits exist. Then f'(a) exists iff these one-sided derivatives are exist and equal.

イロト イヨト イヨト イヨト

$$f'_{-}(a) = \lim_{h \to 0, h > 0} \frac{f(a) - f(a - h)}{h}$$

and

$$f'_+(a) = \lim_{h \to 0, h > 0} \frac{f(a+h) - f(a)}{h}$$

if there limits exist. Then f'(a) exists iff these one-sided derivatives are exist and equal.

< ロ > < 同 > < 回 > < 回 >

$$f'_-(a) = \lim_{h \to 0, h > 0} \frac{f(a) - f(a - h)}{h}$$

and

$$f'_{+}(a) = \lim_{h \to 0, h > 0} \frac{f(a+h) - f(a)}{h}$$

if there limits exist. Then f'(a) exists iff these one-sided derivatives are exist and equal.

< ロ > < 同 > < 回 > < 回 >

$$f'_{-}(a) = \lim_{h \to 0, h > 0} \frac{f(a) - f(a - h)}{h}$$

and

$$f'_{+}(a) = \lim_{h \to 0, h > 0} \frac{f(a+h) - f(a)}{h}$$

if there limits exist. Then f'(a) exists iff these one-sided derivatives are exist and equal.

Ex. If Find $f'_{-}(4)$ and $f'_{+}(4)$ for the function

$$f(x) = \begin{cases} 0 & \text{if } x \le 0\\ 5 - x & \text{if } 0 < x < 4\\ \frac{1}{5 - x} & \text{if } x \ge 4 \end{cases}$$

Sketch the graph of f.

- Where is f discontinuous?
- Where is f not differentiable?

・ロト ・ 四ト ・ ヨト ・ ヨト

Ex. • Find $f'_{-}(4)$ and $f'_{+}(4)$ for the function

$$f(x) = \begin{cases} 0 & \text{if } x \le 0\\ 5 - x & \text{if } 0 < x < 4\\ \frac{1}{5 - x} & \text{if } x \ge 4 \end{cases}$$

Sketch the graph of f.

- Where is f discontinuous?
- Where is f not differentiable?

Ex. If ind $f'_{-}(4)$ and $f'_{+}(4)$ for the function

$$f(x) = \begin{cases} 0 & \text{if } x \le 0\\ 5 - x & \text{if } 0 < x < 4\\ \frac{1}{5 - x} & \text{if } x \ge 4 \end{cases}$$

- Sketch the graph of f.
- Where is f discontinuous?
- Where is f not differentiable?

Ex. Sind $f'_{-}(4)$ and $f'_{+}(4)$ for the function

$$f(x) = \begin{cases} 0 & \text{if } x \le 0\\ 5 - x & \text{if } 0 < x < 4\\ \frac{1}{5 - x} & \text{if } x \ge 4 \end{cases}$$

Sketch the graph of f.

Where is f discontinuous?

Where is f not differentiable?

Ex. Find $f'_{-}(4)$ and $f'_{+}(4)$ for the function

$$f(x) = \begin{cases} 0 & \text{if } x \le 0\\ 5 - x & \text{if } 0 < x < 4\\ \frac{1}{5 - x} & \text{if } x \ge 4 \end{cases}$$

- Sketch the graph of f.
- Where is f discontinuous?
- Where is f not differentiable?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Ex. Find $f'_{-}(4)$ and $f'_{+}(4)$ for the function

$$f(x) = \begin{cases} 0 & \text{if } x \le 0\\ 5 - x & \text{if } 0 < x < 4\\ \frac{1}{5 - x} & \text{if } x \ge 4 \end{cases}$$

- Sketch the graph of f.
- Where is f discontinuous?
- Where is f not differentiable?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem If f is differentiable at a, then f is continuous at a.

Proof :

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a} (x - a); \ (x \neq a)$$
$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} (x - a)$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \lim_{x \to a} (x - a)$$
$$= f'(a) \cdot 0$$
$$= 0$$

 $\Rightarrow \lim_{x \to a} f(x) = f(a)$. Therefore, f is continuous at a

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

イロト イポト イヨト イヨト

Theorem If f is differentiable at a, then f is continuous at a.

Proof :

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a}(x - a); \ (x \neq a)$$
$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}(x - a)$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \lim_{x \to a} (x - a)$$
$$= f'(a) \cdot 0$$
$$= 0$$

 $\Rightarrow \lim_{x \to a} f(x) = f(a)$. Therefore, f is continuous at a

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

イロト イポト イヨト イヨト

If f is differentiable at a, then f is continuous at a.

Proof :

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a}(x - a); \ (x \neq a)$$
$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}(x - a)$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \lim_{x \to a} (x - a)$$
$$= f'(a) \cdot 0$$
$$= 0$$

 $\Rightarrow \lim_{x \to a} f(x) = f(a)$. Therefore, f is continuous at a

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

If f is differentiable at a, then f is continuous at a.

Proof :

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a}(x - a); \ (x \neq a)$$
$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}(x - a)$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \lim_{x \to a} (x - a)$$
$$= f'(a) \cdot 0$$
$$= 0$$

 $\Rightarrow \lim_{x \to a} f(x) = f(a)$. Therefore, f is continuous at a

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

If f is differentiable at a, then f is continuous at a.

Proof :

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a}(x - a); \ (x \neq a)$$
$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}(x - a)$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \lim_{x \to a} (x - a)$$
$$= f'(a) \cdot 0$$
$$= 0$$

 $\Rightarrow \lim_{x \to a} f(x) = f(a)$. Therefore, f is continuous at a

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

If f is differentiable at a, then f is continuous at a.

Proof :

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a}(x - a); \ (x \neq a)$$
$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}(x - a)$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \lim_{x \to a} (x - a)$$
$$= f'(a) \cdot 0$$
$$= 0$$

 $\Rightarrow \lim_{x \to a} f(x) = f(a)$. Therefore, f is continuous at a

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

イロト イポト イヨト イヨト

If f is differentiable at a, then f is continuous at a.

Proof :

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a}(x - a); \ (x \neq a)$$
$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}(x - a)$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \lim_{x \to a} (x - a)$$
$$= f'(a) \cdot 0$$
$$= 0$$

 $\Rightarrow \lim_{x \to a} f(x) = f(a)$. Therefore, f is continuous at a

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

イロト イポト イヨト イヨト

If f is differentiable at a, then f is continuous at a.

Proof :

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a}(x - a); \ (x \neq a)$$
$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}(x - a)$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \lim_{x \to a} (x - a)$$
$$= f'(a) \cdot 0$$
$$= 0$$

 $\Rightarrow \lim_{x \to a} f(x) = f(a)$. Therefore, *f* is continuous at *a*.

< ロ > < 同 > < 回 > < 回 >

For instance, the function f(x) = |x| is continuous at 0 because

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} |x| = 0 = f(0)$$

But in Example we showed that *f* is not differentiable at 0.

For instance, the function f(x) = |x| is continuous at 0 because

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} |x| = 0 = f(0)$$

But in Example we showed that *f* is not differentiable at 0.

Dr. G.H.J. Lanel (USJP)

For instance, the function f(x) = |x| is continuous at 0 because

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} |x| = 0 = f(0)$$

But in Example we showed that *f* is not differentiable at 0.

Dr. G.H.J. Lanel (USJP)

For instance, the function f(x) = |x| is continuous at 0 because

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} |x| = 0 = f(0)$$

But in Example we showed that *f* is not differentiable at 0.

Dr. G.H.J. Lanel (USJP)

Outline

2 Other Notations

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 9 20 / 25

Second derivative

If *f* is a differentiable function, then its derivative *f'* is also a function, so *f'* may have a derivative of its own, denoted by (f')' = f''. This new function *f''* is called the **second derivative** of because it is the derivative of the derivative of *f*. We write the second derivative of y = f(x) as

< 回 > < 回 > < 回 >

Second derivative

If *f* is a differentiable function, then its derivative f' is also a function, so f' may have a derivative of its own, denoted by (f')' = f''. This new function f'' called the **second derivative** of because it is the derivative of the derivative of *f*. We write the second derivative of y = f(x) as

$$\frac{d}{dx}(\frac{dy}{dx}) = \frac{d^2y}{dx^2}$$

A D A D A D A

If
$$f(x) = x^3 - x$$
, find an interpret $f''(x)$.

Solution:

first derivative is $f'(x) = 3x^2 - 1$. So the second derivative is;

$$f''(x) = (f')'(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = \lim_{h \to 0} \frac{[3*(x+h)^2 - 1] - [3x^2 - 1]}{h} = \lim_{h \to 0} \frac{3x^2 + 6xh3h^2 - 1 - 3x^2 + 1}{h} = \lim_{h \to 0} \frac{6x+3h}{h} = 6x$$

Dr. G.H.J. Lanel (USJP)

(日)

If
$$f(x) = x^3 - x$$
, find an interpret $f''(x)$.

Solution:

first derivative is $f'(x) = 3x^2 - 1$. So the second derivative is;

$$f''(x) = (f')'(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = \lim_{h \to 0} \frac{[3*(x+h)^2 - 1] - [3x^2 - 1]}{h} = \lim_{h \to 0} \frac{3x^2 + 6xh3h^2 - 1 - 3x^2 + 1}{h} = \lim_{h \to 0} \frac{6x+3h}{h} = 6x$$

Dr. G.H.J. Lanel (USJP)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If
$$f(x) = x^3 - x$$
, find an interpret $f''(x)$.

Solution:

first derivative is $f'(x) = 3x^2 - 1$. So the second derivative is;

$$f''(x) = (f')'(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = \lim_{h \to 0} \frac{[3*(x+h)^2 - 1] - [3x^2 - 1]}{h} = \lim_{h \to 0} \frac{3x^2 + 6xh3h^2 - 1 - 3x^2 + 1}{h} = \lim_{h \to 0} \frac{6x+3h}{h} = 6x$$

Dr. G.H.J. Lanel (USJP)

If
$$f(x) = x^3 - x$$
, find an interpret $f''(x)$.

Solution:

first derivative is $f'(x) = 3x^2 - 1$. So the second derivative is;

$$f''(x) = (f')'(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = \lim_{h \to 0} \frac{[3*(x+h)^2 - 1] - [3x^2 - 1]}{h} = \lim_{h \to 0} \frac{3x^2 + 6xh3h^2 - 1 - 3x^2 + 1}{h} = \lim_{h \to 0} \frac{6x+3h}{h} = 6x$$

Dr. G.H.J. Lanel (USJP)

E 990

イロト イポト イヨト イヨト

In general, we can interpret a second derivative as a rate of change of a rate of change. The most familiar example of this is acceleration, which we define as follows. If s = s(t) is the position function of an object that moves in a straight line, we know that its first derivative represents the velocity of the object as a function of time:

$$v(t) = s'(t) = rac{ds}{dt}$$

The instantaneous rate of change of velocity with respect to time is called the acceleration a(t) of the object. Thus the acceleration function is the derivative of the velocity function and is therefore the second derivative of the position function:

$$a(t) = v'(t) = s''(t)$$

< ロ > < 同 > < 回 > < 回 >

In general, we can interpret a second derivative as a rate of change of a rate of change. The most familiar example of this is acceleration, which we define as follows. If s = s(t) is the position function of an object that moves in a straight line, we know that its first derivative represents the velocity of the object as a function of time:

$$v(t) = s'(t) = rac{ds}{dt}$$

The instantaneous rate of change of velocity with respect to time is called the acceleration a(t) of the object. Thus the acceleration function is the derivative of the velocity function and is therefore the second derivative of the position function:

$$a(t) = v'(t) = s''(t)$$

Third derivative

Third derivative is the derivative of the second derivative: f''' = (f'')'. So f'''(x) can be interpreted as the slope of the curve y = f''(x) or as the rate of change of f''(x). If y = f(x), then alternative notations for the third derivative are,

$$y''' = f'''(x) = \frac{d}{dx}(\frac{d^2y}{dx^2}) = \frac{d^3y}{dx^3}$$

The process can be continued. The fourth derivative $f^{(\prime\prime\prime)}$ is usually denoted by $f^{(4)}$. In general, the *n*th derivative of is denoted by $f^{(n)}$ and is obtained from *f* by differentiating *n* times. If y = f(x), we write

$$y^{(n)} = f^{(n)}(x) = \frac{d^n(y)}{dx^n}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Third derivative

Third derivative is the derivative of the second derivative: f''' = (f'')'. So f'''(x) can be interpreted as the slope of the curve y = f''(x) or as the rate of change of f''(x). If y = f(x), then alternative notations for the third derivative are,

$$y''' = f'''(x) = \frac{d}{dx}(\frac{d^2y}{dx^2}) = \frac{d^3y}{dx^3}$$

The process can be continued. The fourth derivative f'''' is usually denoted by $f^{(4)}$. In general, the *n*th derivative of is denoted by $f^{(n)}$ and is obtained from *f* by differentiating *n* times. If y = f(x), we write

$$y^{(n)} = f^{(n)}(x) = \frac{d^n(y)}{dx^n}$$

Dr. G.H.J. Lanel (USJP)

If $f(x) = x^3 - x$, find f'''(x) and $f^{(4)}(x)$.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 9 25 / 25

イロン イロン イヨン イヨン 三日

If $f(x) = x^3 - x$, find f'''(x) and $f^{(4)}(x)$.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

Lecture 9 25 / 25

If
$$f(x) = x^3 - x$$
, find $f'''(x)$ and $f^{(4)}(x)$.

Dr. G.H.J. Lanel (USJP)

MAT 122 2.0 Calculus

▲ ■ ▶ ■ つへの Lecture 9 25/25

イロト イヨト イヨト イヨト