
AMT 211 2.0 Design and Analysis of Algorithms

Dr. G.H.J. Lanel

Semester 1 - 2017

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 1 / 194

Outline
1 Mathematics for the Analysis of Algorithms

Binomial Identities
Recurrence Relations
Asymptotic Analysis

2 Introduction to Algorithm Design, Validation and Analysis
3 Analysis of Algorithms

Best, Average, and Worst Case Running Times
Big O, Little o, Ω (Omega), and Θ (Theta) Notations
Complexity classes

4 Time Complexity of Searching and Shorting Algorithms
Sequential and Binary Search Algorithms
Sorting Algorithms
Breadth First and Depth First Search Algorithms

5 Algorithm Design Strategies
Divide and Conquer Techniques
Dynamic Programming
Greedy AlgorithmsDr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 2 / 194

Mathematics for the Analysis of Algorithms

Outline
1 Mathematics for the Analysis of Algorithms

Binomial Identities
Recurrence Relations
Asymptotic Analysis

2 Introduction to Algorithm Design, Validation and Analysis
3 Analysis of Algorithms

Best, Average, and Worst Case Running Times
Big O, Little o, Ω (Omega), and Θ (Theta) Notations
Complexity classes

4 Time Complexity of Searching and Shorting Algorithms
Sequential and Binary Search Algorithms
Sorting Algorithms
Breadth First and Depth First Search Algorithms

5 Algorithm Design Strategies
Divide and Conquer Techniques
Dynamic Programming
Greedy AlgorithmsDr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 3 / 194

Mathematics for the Analysis of Algorithms Binomial Identities

What is the Binomial Identity?

In general, a binomial identity is a formula expressing products of
factors as a sum over terms, each including a binomial coefficient

(n
k

)
.

The prototypical example is the binomial theorem;

For n > 0

(x + a)n =
∑n

k=0
(n

k

)
xkan−k

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 4 / 194

Mathematics for the Analysis of Algorithms Binomial Identities

What is the Binomial Identity?

In general, a binomial identity is a formula expressing products of
factors as a sum over terms, each including a binomial coefficient

(n
k

)
.

The prototypical example is the binomial theorem;

For n > 0

(x + a)n =
∑n

k=0
(n

k

)
xkan−k

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 4 / 194

Mathematics for the Analysis of Algorithms Recurrence Relations

Many algorithms, particularly divide and conquer algorithms, have time
complexities which are naturally modeled by recurrence relations.

A recurrence relation is an equation which is defined in terms of itself.

Why are recurrences good things?

1 Many natural functions are easily expressed as recurrences:

an = an−1 + 1,a1 = 1→ an = n (polynomial)

an = 2 ∗ an−1,a1 = 1→ an = 2n−1 (exponential)

an = n ∗ an−1,a1 = 1→ an = n! (weird function)
2 It is often easy to find a recurrence as the solution of a counting

problem. Solving the recurrence can be done for many special
cases as we will see, although it is somewhat of an art.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 5 / 194

Mathematics for the Analysis of Algorithms Recurrence Relations

Many algorithms, particularly divide and conquer algorithms, have time
complexities which are naturally modeled by recurrence relations.

A recurrence relation is an equation which is defined in terms of itself.

Why are recurrences good things?

1 Many natural functions are easily expressed as recurrences:

an = an−1 + 1,a1 = 1→ an = n (polynomial)

an = 2 ∗ an−1,a1 = 1→ an = 2n−1 (exponential)

an = n ∗ an−1,a1 = 1→ an = n! (weird function)
2 It is often easy to find a recurrence as the solution of a counting

problem. Solving the recurrence can be done for many special
cases as we will see, although it is somewhat of an art.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 5 / 194

Mathematics for the Analysis of Algorithms Recurrence Relations

Recursion is Mathematical Induction!

In both we have general and boundary conditions, with the general
condition breaking the problem into smaller and smaller pieces.

The initial or boundary condition terminate the recursion.

As we will see, induction provides a useful tool to solve recurrences-
guess a solution and prove it by induction.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 6 / 194

Mathematics for the Analysis of Algorithms Recurrence Relations

Example:

Tn = 2 ∗ Tn−1 + 1,T0 = 0

Guess what the solution is?

Prove Tn = 2n − 1 by induction:

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 7 / 194

Mathematics for the Analysis of Algorithms Recurrence Relations

Solution:

1 Show that the basis is true: T0 = 20 − 1 = 0.
2 Now assume true for Tn−1.
3 Using this assumption show:

Tn = 2 ∗ Tn−1 + 1 = 2(2n−1 − 1) + 1 = 2n − 1

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 8 / 194

Mathematics for the Analysis of Algorithms Recurrence Relations

Solving Recurrences

No general procedure for solving recurrence relations is known which
is why it is an art.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 9 / 194

Mathematics for the Analysis of Algorithms Asymptotic Analysis

Asymptotic Analysis

1 The asymptotic analysis of an algorithm determines the running
time in big-Oh notation.

2 To perform the asymptotic analysis

1 We find the worst-case number of primitive operations executed as
a function of the input size.

2 We express this function with big-Oh notation.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 10 / 194

Mathematics for the Analysis of Algorithms Asymptotic Analysis

Example of Asymptotic Analysis

Algorithm prefixAverages1(X) ”runs in O(n) time”
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 11 / 194

Mathematics for the Analysis of Algorithms Asymptotic Analysis

Asymptotic Notation(Terminology)

1 Special classes of algorithms:

logarithmic: O(logn)
linear: O(n)
quadratic: O(n2)
polynomial: O(nk), k ≥ 1
exponential: O(an),n > 1

2 ”Relatives” of the Big-Oh
1 Ω(f (n)): Big Omega–asymptotic lower bound

2 Θ(f (n)): Big Theta–asymptotic tight bound

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 12 / 194

Mathematics for the Analysis of Algorithms Asymptotic Analysis

Asymptotic Analysis of The Running Time

1 Use the Big-Oh notation to express the number of primitive
operations executed as a function of the input size.

2 For example, we say that the prefixAverages algorithm runs in
O (n) time.

3 Comparing the asymptotic running time

1 an algorithm that runs in O (n) time is better than one that runs in
O
(
n2
)

time.

2 similarly, O (logn) is better than O (n).

3 hierarchy of functions: logn ≤ n ≤ n2 ≤ n3 ≤ 2n.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 13 / 194

Mathematics for the Analysis of Algorithms Asymptotic Analysis

Caution! Beware of very large constant factors.

An algorithm running in time 1,000,000 n is still O (n) but might be less
efficient on your data set than one running in time 2n2, which is O

(
n2).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 14 / 194

Introduction to Algorithm Design, Validation and Analysis

Outline
1 Mathematics for the Analysis of Algorithms

Binomial Identities
Recurrence Relations
Asymptotic Analysis

2 Introduction to Algorithm Design, Validation and Analysis
3 Analysis of Algorithms

Best, Average, and Worst Case Running Times
Big O, Little o, Ω (Omega), and Θ (Theta) Notations
Complexity classes

4 Time Complexity of Searching and Shorting Algorithms
Sequential and Binary Search Algorithms
Sorting Algorithms
Breadth First and Depth First Search Algorithms

5 Algorithm Design Strategies
Divide and Conquer Techniques
Dynamic Programming
Greedy AlgorithmsDr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 15 / 194

Introduction to Algorithm Design, Validation and Analysis

Algorithm

An algorithm is a process to solve a problem manually in
sequence with finite number of steps.
It is a set of rules that must be followed when solving a specific
problem.
It is a well-defined computational procedure which takes some
value or set of values as input and generates some set of values
as output.
So,an algorithm is defined as a finite sequence of computational
steps, that transforms to given input into the output for a given
problem.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 16 / 194

Introduction to Algorithm Design, Validation and Analysis

An algorithm is considered to be correct, if for every input
instance, it generates the correct output and gets terminated.

So, a correct algorithm solves a given computational problem and
gives the desired output.

The main objectives of algorithm are

To solve a problem manually in sequence with finite number of
steps.

For designing an algorithm, we need to construct an efficient
solution for a problem.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 17 / 194

Introduction to Algorithm Design, Validation and Analysis

Algorithm Paradigm

It includes four steps.That is:

1 Design of Algorithm

2 Algorithm validation

3 Analysis of algorithms

4 Algorithm testing

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 18 / 194

Introduction to Algorithm Design, Validation and Analysis

1. Design of algorithm:

Various designing techniques are available which yield good and
useful algorithm.

These techniques are not only applicable to only computer
science, but also to other areas, such as operation research and
electrical engineering.

The techniques are: divide and conquer, incremental approach,
dynamic programming...etc. By studying this we can formulate
good algorithm.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 19 / 194

Introduction to Algorithm Design, Validation and Analysis

2. Algorithm validation:

Algorithm validation checks the algorithm result for all legal set of
input.

After designing, it is necessary to check the algorithm, whether it
computes the correct and desired result or not for all possible
legal set of input.

Here the algorithm is not converted into the program.But after
showing the validity of the method, a program is written.This is
known as ”program providing” or ” program verification”.

Here we check the program output for all possible set of input.

It requires that, each statement should be precisely defined an all
basic operations can be correctly provided.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 20 / 194

Introduction to Algorithm Design, Validation and Analysis

3. Analysis of algorithms:

The analysis of algorithm focuses on time complexity or space
complexity.

The amount of memory needed by program to run to completion is
referred to as space complexity.

The amount of time needed by an algorithm to run to completion
is referred to as time complexity.

For an algorithm time complexity depends upon the size of the
input, thus is a function of input size ’n’.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 21 / 194

Introduction to Algorithm Design, Validation and Analysis

Usually, we deal with the best case time, average case time and
worst case time for an algorithm.

The minimum amount of time that an algorithm requires for an
input size ’n’, is referred to as Best Case Time Complexity.

Average Case Time Complexity is the execution of an algorithm
having typical input data of size ’n’.

The maximum amount of time needed by an algorithm for an input
size ’n’ is referred to as Worst Case Time Complexity.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 22 / 194

Introduction to Algorithm Design, Validation and Analysis

4. Algorithm testing:

This phase involves testing of a program.It consists of two
phases.That is: Debugging and Performance Measurement.

Debugging is the process of finding and correcting the cause at
variance with the desired and observed behaviors.

Debugging can only point to the presence of errors, but not their
absence.

The performance measurement or profiling precise by described
the correct program execution for all possible data sets and it
takes time and space to compute results.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 23 / 194

Introduction to Algorithm Design, Validation and Analysis

NOTES

While designing and analyzing an algorithm, two fundamental
issue to be considered.That is:

1 Correctness of the algorithm

2 Efficiency of the algorithm

While designing the algorithm, it should be clear, simple and
should be unambiguous.

The characteristics of algorithm is: finiteness, definiteness,
efficiency, input and output.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 24 / 194

Analysis of Algorithms

Outline
1 Mathematics for the Analysis of Algorithms

Binomial Identities
Recurrence Relations
Asymptotic Analysis

2 Introduction to Algorithm Design, Validation and Analysis
3 Analysis of Algorithms

Best, Average, and Worst Case Running Times
Big O, Little o, Ω (Omega), and Θ (Theta) Notations
Complexity classes

4 Time Complexity of Searching and Shorting Algorithms
Sequential and Binary Search Algorithms
Sorting Algorithms
Breadth First and Depth First Search Algorithms

5 Algorithm Design Strategies
Divide and Conquer Techniques
Dynamic Programming
Greedy AlgorithmsDr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 25 / 194

Analysis of Algorithms Best, Average, and Worst Case Running Times

We can have three cases to analyze an algorithm:

1 Worst Case

2 Average Case

3 Best Case

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 26 / 194

Analysis of Algorithms Best, Average, and Worst Case Running Times

Let us consider the following implementation of Linear Search.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 27 / 194

Analysis of Algorithms Best, Average, and Worst Case Running Times

Worst Case Analysis (Usually Done)

In the worst case analysis, we calculate upper bound on running
time of an algorithm.
We must know the case that causes maximum number of
operations to be executed.
For Linear Search, the worst case happens when the element to
be searched (x in the previous code) is not present in the array.
When x is not present, the search() functions compares it with all
the elements of arr[] one by one.
Therefore, the worst case time complexity of linear search would
be θ(n).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 28 / 194

Analysis of Algorithms Best, Average, and Worst Case Running Times

Average Case Analysis (Sometimes done)

In average case analysis, we take all possible inputs and calculate
computing time for all of the inputs.
Sum all the calculated values and divide the sum by total number
of inputs.
We must know distribution of cases.
For the linear search problem, let us assume that all cases are
uniformly distributed (including the case of x not being present in
array).
So we sum all the cases and divide the sum by (n+1).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 29 / 194

Analysis of Algorithms Best, Average, and Worst Case Running Times

Following is the value of average case time complexity.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 30 / 194

Analysis of Algorithms Best, Average, and Worst Case Running Times

Best Case Analysis (Bogus)

In the best case analysis, we calculate lower bound on running
time of an algorithm.
We must know the case that causes minimum number of
operations to be executed.
In the linear search problem, the best case occurs when x is
present at the first location.
The number of operations in the best case is constant (not
dependent on n).
So time complexity in the best case would be θ(1)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 31 / 194

Analysis of Algorithms Best, Average, and Worst Case Running Times

Most of the times, we do worst case analysis to analyze
algorithms. In the worst case analysis, we guarantee an upper
bound on the running time of an algorithm which is good
information.

The average case analysis is not easy to do in most of the
practical cases and it is rarely done. In the average case analysis,
we must know the mathematical distribution of all possible inputs.

The best case analysis is bogus. Guaranteeing a lower bound on
an algorithm doesnt provide any information as in the worst case,
an algorithm may take years to run.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 32 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Big-O

The most basic concept concerning the growth functions is Big-O.

The statement that f is big-O of g express the fact that for large
enough x , f will be bounded above by some constant multiple of g.

Definition
Let f and g be functions from the natural numbers to the real numbers.
Then g asymptotically dominates f or f is big-O of g, if there exists
a positive constants c and k s.t.

|f (x)| ≤ c |g(x)| , for x ≥ k

If f is big-O of g then we write f (x) is O(g(x)) or f ∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 33 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Big-O

The most basic concept concerning the growth functions is Big-O.

The statement that f is big-O of g express the fact that for large
enough x , f will be bounded above by some constant multiple of g.

Definition
Let f and g be functions from the natural numbers to the real numbers.
Then g asymptotically dominates f or f is big-O of g, if there exists
a positive constants c and k s.t.

|f (x)| ≤ c |g(x)| , for x ≥ k

If f is big-O of g then we write f (x) is O(g(x)) or f ∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 33 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Big-O

The most basic concept concerning the growth functions is Big-O.

The statement that f is big-O of g express the fact that for large
enough x , f will be bounded above by some constant multiple of g.

Definition
Let f and g be functions from the natural numbers to the real numbers.
Then g asymptotically dominates f or f is big-O of g, if there exists
a positive constants c and k s.t.

|f (x)| ≤ c |g(x)| , for x ≥ k

If f is big-O of g then we write f (x) is O(g(x)) or f ∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 33 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Following theorems gives a necessary condition for f to be big-O of g
in terms of limits.

Theorem

If limx→∞
|f (x)|
|g(x)| = L, where L ∈ R and L ≥ 0 then f ∈ O(g)

Proof:

Suppose limx→∞
|f (x)|
|g(x)| = L, where L ∈ R and L ≥ 0.

Then by the definition of limit, we can find |f (x)|
|g(x)| as close to L by

choosing x large enough.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 34 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Following theorems gives a necessary condition for f to be big-O of g
in terms of limits.

Theorem

If limx→∞
|f (x)|
|g(x)| = L, where L ∈ R and L ≥ 0 then f ∈ O(g)

Proof:

Suppose limx→∞
|f (x)|
|g(x)| = L, where L ∈ R and L ≥ 0.

Then by the definition of limit, we can find |f (x)|
|g(x)| as close to L by

choosing x large enough.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 34 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Following theorems gives a necessary condition for f to be big-O of g
in terms of limits.

Theorem

If limx→∞
|f (x)|
|g(x)| = L, where L ∈ R and L ≥ 0 then f ∈ O(g)

Proof:

Suppose limx→∞
|f (x)|
|g(x)| = L, where L ∈ R and L ≥ 0.

Then by the definition of limit, we can find |f (x)|
|g(x)| as close to L by

choosing x large enough.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 34 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Following theorems gives a necessary condition for f to be big-O of g
in terms of limits.

Theorem

If limx→∞
|f (x)|
|g(x)| = L, where L ∈ R and L ≥ 0 then f ∈ O(g)

Proof:

Suppose limx→∞
|f (x)|
|g(x)| = L, where L ∈ R and L ≥ 0.

Then by the definition of limit, we can find |f (x)|
|g(x)| as close to L by

choosing x large enough.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 34 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Following theorems gives a necessary condition for f to be big-O of g
in terms of limits.

Theorem

If limx→∞
|f (x)|
|g(x)| = L, where L ∈ R and L ≥ 0 then f ∈ O(g)

Proof:

Suppose limx→∞
|f (x)|
|g(x)| = L, where L ∈ R and L ≥ 0.

Then by the definition of limit, we can find |f (x)|
|g(x)| as close to L by

choosing x large enough.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 34 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Proof Contd...

In particular, we can ensure that |f (x)|
|g(x)| is within a distance 1 of L by

choosing x ≥ k for some k > 0, (i.e. ∃ k(> 0) s.t if x ≥ k), then∣∣∣∣ |f (x)|
|g(x)|

− L
∣∣∣∣ ≤ 1

In particular
|f (x)|
|g(x)|

− L ≤ 1

|f (x)|
|g(x)|

≤ L + 1

Therefore |f (x)| ≤ (L + 1)g(x)

So we can choose c = L + 1, thus f ∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 35 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Proof Contd...

In particular, we can ensure that |f (x)|
|g(x)| is within a distance 1 of L by

choosing x ≥ k for some k > 0, (i.e. ∃ k(> 0) s.t if x ≥ k), then∣∣∣∣ |f (x)|
|g(x)|

− L
∣∣∣∣ ≤ 1

In particular
|f (x)|
|g(x)|

− L ≤ 1

|f (x)|
|g(x)|

≤ L + 1

Therefore |f (x)| ≤ (L + 1)g(x)

So we can choose c = L + 1, thus f ∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 35 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Proof Contd...

In particular, we can ensure that |f (x)|
|g(x)| is within a distance 1 of L by

choosing x ≥ k for some k > 0, (i.e. ∃ k(> 0) s.t if x ≥ k), then∣∣∣∣ |f (x)|
|g(x)|

− L
∣∣∣∣ ≤ 1

In particular
|f (x)|
|g(x)|

− L ≤ 1

|f (x)|
|g(x)|

≤ L + 1

Therefore |f (x)| ≤ (L + 1)g(x)

So we can choose c = L + 1, thus f ∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 35 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Proof Contd...

In particular, we can ensure that |f (x)|
|g(x)| is within a distance 1 of L by

choosing x ≥ k for some k > 0, (i.e. ∃ k(> 0) s.t if x ≥ k), then∣∣∣∣ |f (x)|
|g(x)|

− L
∣∣∣∣ ≤ 1

In particular
|f (x)|
|g(x)|

− L ≤ 1

|f (x)|
|g(x)|

≤ L + 1

Therefore |f (x)| ≤ (L + 1)g(x)

So we can choose c = L + 1, thus f ∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 35 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Proof Contd...

In particular, we can ensure that |f (x)|
|g(x)| is within a distance 1 of L by

choosing x ≥ k for some k > 0, (i.e. ∃ k(> 0) s.t if x ≥ k), then∣∣∣∣ |f (x)|
|g(x)|

− L
∣∣∣∣ ≤ 1

In particular
|f (x)|
|g(x)|

− L ≤ 1

|f (x)|
|g(x)|

≤ L + 1

Therefore |f (x)| ≤ (L + 1)g(x)

So we can choose c = L + 1, thus f ∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 35 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Proof Contd...

In particular, we can ensure that |f (x)|
|g(x)| is within a distance 1 of L by

choosing x ≥ k for some k > 0, (i.e. ∃ k(> 0) s.t if x ≥ k), then∣∣∣∣ |f (x)|
|g(x)|

− L
∣∣∣∣ ≤ 1

In particular
|f (x)|
|g(x)|

− L ≤ 1

|f (x)|
|g(x)|

≤ L + 1

Therefore |f (x)| ≤ (L + 1)g(x)

So we can choose c = L + 1, thus f ∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 35 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 + 10 is O(x2)

Sol: Taking the limit

lim
x→∞

|x2 + 10|
|x2|

= lim
x→∞

∣∣∣∣x2 + 10
x2

∣∣∣∣
= lim

x→∞

∣∣∣∣1 +
10
x2

∣∣∣∣
= 1 > 0

Therefore by theorem, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 36 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 + 10 is O(x2)

Sol: Taking the limit

lim
x→∞

|x2 + 10|
|x2|

= lim
x→∞

∣∣∣∣x2 + 10
x2

∣∣∣∣
= lim

x→∞

∣∣∣∣1 +
10
x2

∣∣∣∣
= 1 > 0

Therefore by theorem, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 36 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 + 10 is O(x2)

Sol: Taking the limit

lim
x→∞

|x2 + 10|
|x2|

= lim
x→∞

∣∣∣∣x2 + 10
x2

∣∣∣∣
= lim

x→∞

∣∣∣∣1 +
10
x2

∣∣∣∣
= 1 > 0

Therefore by theorem, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 36 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 + 10 is O(x2)

Sol: Taking the limit

lim
x→∞

|x2 + 10|
|x2|

= lim
x→∞

∣∣∣∣x2 + 10
x2

∣∣∣∣
= lim

x→∞

∣∣∣∣1 +
10
x2

∣∣∣∣
= 1 > 0

Therefore by theorem, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 36 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 + 10 is O(x2)

Sol: Taking the limit

lim
x→∞

|x2 + 10|
|x2|

= lim
x→∞

∣∣∣∣x2 + 10
x2

∣∣∣∣
= lim

x→∞

∣∣∣∣1 +
10
x2

∣∣∣∣
= 1 > 0

Therefore by theorem, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 36 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 + 10 is O(x2)

Sol: Taking the limit

lim
x→∞

|x2 + 10|
|x2|

= lim
x→∞

∣∣∣∣x2 + 10
x2

∣∣∣∣
= lim

x→∞

∣∣∣∣1 +
10
x2

∣∣∣∣
= 1 > 0

Therefore by theorem, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 36 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that x2 + 10 is O(x2) using the definition of Big −O

Sol:
Let c = 3 and k = 3 , Then if x ≥ 3

∣∣∣3x2
∣∣∣ =

∣∣∣x2 + 2x2
∣∣∣ ≥ ∣∣∣x2 + 2× 32

∣∣∣
≥
∣∣∣x2 + 10

∣∣∣
Then,

∣∣x2 + 10
∣∣ ≤ 3

∣∣x2
∣∣ for x ≥ 3

Hence, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 37 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that x2 + 10 is O(x2) using the definition of Big −O

Sol:
Let c = 3 and k = 3 , Then if x ≥ 3

∣∣∣3x2
∣∣∣ =

∣∣∣x2 + 2x2
∣∣∣ ≥ ∣∣∣x2 + 2× 32

∣∣∣
≥
∣∣∣x2 + 10

∣∣∣
Then,

∣∣x2 + 10
∣∣ ≤ 3

∣∣x2
∣∣ for x ≥ 3

Hence, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 37 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that x2 + 10 is O(x2) using the definition of Big −O

Sol:
Let c = 3 and k = 3 , Then if x ≥ 3

∣∣∣3x2
∣∣∣ =

∣∣∣x2 + 2x2
∣∣∣ ≥ ∣∣∣x2 + 2× 32

∣∣∣
≥
∣∣∣x2 + 10

∣∣∣
Then,

∣∣x2 + 10
∣∣ ≤ 3

∣∣x2
∣∣ for x ≥ 3

Hence, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 37 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that x2 + 10 is O(x2) using the definition of Big −O

Sol:
Let c = 3 and k = 3 , Then if x ≥ 3

∣∣∣3x2
∣∣∣ =

∣∣∣x2 + 2x2
∣∣∣ ≥ ∣∣∣x2 + 2× 32

∣∣∣
≥
∣∣∣x2 + 10

∣∣∣
Then,

∣∣x2 + 10
∣∣ ≤ 3

∣∣x2
∣∣ for x ≥ 3

Hence, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 37 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that x2 + 10 is O(x2) using the definition of Big −O

Sol:
Let c = 3 and k = 3 , Then if x ≥ 3

∣∣∣3x2
∣∣∣ =

∣∣∣x2 + 2x2
∣∣∣ ≥ ∣∣∣x2 + 2× 32

∣∣∣
≥
∣∣∣x2 + 10

∣∣∣
Then,

∣∣x2 + 10
∣∣ ≤ 3

∣∣x2
∣∣ for x ≥ 3

Hence, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 37 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that x2 + 10 is O(x2) using the definition of Big −O

Sol:
Let c = 3 and k = 3 , Then if x ≥ 3

∣∣∣3x2
∣∣∣ =

∣∣∣x2 + 2x2
∣∣∣ ≥ ∣∣∣x2 + 2× 32

∣∣∣
≥
∣∣∣x2 + 10

∣∣∣
Then,

∣∣x2 + 10
∣∣ ≤ 3

∣∣x2
∣∣ for x ≥ 3

Hence, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 37 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that x2 + 10 is O(x2) using the definition of Big −O

Sol:
Let c = 3 and k = 3 , Then if x ≥ 3

∣∣∣3x2
∣∣∣ =

∣∣∣x2 + 2x2
∣∣∣ ≥ ∣∣∣x2 + 2× 32

∣∣∣
≥
∣∣∣x2 + 10

∣∣∣
Then,

∣∣x2 + 10
∣∣ ≤ 3

∣∣x2
∣∣ for x ≥ 3

Hence, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 37 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that x2 + 10 is O(x2) using the definition of Big −O

Sol:
Let c = 3 and k = 3 , Then if x ≥ 3

∣∣∣3x2
∣∣∣ =

∣∣∣x2 + 2x2
∣∣∣ ≥ ∣∣∣x2 + 2× 32

∣∣∣
≥
∣∣∣x2 + 10

∣∣∣
Then,

∣∣x2 + 10
∣∣ ≤ 3

∣∣x2
∣∣ for x ≥ 3

Hence, x2 + 10 ∈ O(x2)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 37 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 03 Let a,b ∈ R+ − {1}, Prove logax is O(logbx)

Sol: Taking the limit

lim
x→∞

|logax |
|logbx |

= lim
x→∞

∣∣∣∣ logab × logbx
logbx

∣∣∣∣
= |logab| lim

x→∞

∣∣∣∣ logbx
logbx

∣∣∣∣
= |logab|
> 0

Therefore by theorem, logax ∈ O(logbx)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 38 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 03 Let a,b ∈ R+ − {1}, Prove logax is O(logbx)

Sol: Taking the limit

lim
x→∞

|logax |
|logbx |

= lim
x→∞

∣∣∣∣ logab × logbx
logbx

∣∣∣∣
= |logab| lim

x→∞

∣∣∣∣ logbx
logbx

∣∣∣∣
= |logab|
> 0

Therefore by theorem, logax ∈ O(logbx)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 38 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 03 Let a,b ∈ R+ − {1}, Prove logax is O(logbx)

Sol: Taking the limit

lim
x→∞

|logax |
|logbx |

= lim
x→∞

∣∣∣∣ logab × logbx
logbx

∣∣∣∣
= |logab| lim

x→∞

∣∣∣∣ logbx
logbx

∣∣∣∣
= |logab|
> 0

Therefore by theorem, logax ∈ O(logbx)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 38 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 03 Let a,b ∈ R+ − {1}, Prove logax is O(logbx)

Sol: Taking the limit

lim
x→∞

|logax |
|logbx |

= lim
x→∞

∣∣∣∣ logab × logbx
logbx

∣∣∣∣
= |logab| lim

x→∞

∣∣∣∣ logbx
logbx

∣∣∣∣
= |logab|
> 0

Therefore by theorem, logax ∈ O(logbx)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 38 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 03 Let a,b ∈ R+ − {1}, Prove logax is O(logbx)

Sol: Taking the limit

lim
x→∞

|logax |
|logbx |

= lim
x→∞

∣∣∣∣ logab × logbx
logbx

∣∣∣∣
= |logab| lim

x→∞

∣∣∣∣ logbx
logbx

∣∣∣∣
= |logab|
> 0

Therefore by theorem, logax ∈ O(logbx)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 38 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 03 Let a,b ∈ R+ − {1}, Prove logax is O(logbx)

Sol: Taking the limit

lim
x→∞

|logax |
|logbx |

= lim
x→∞

∣∣∣∣ logab × logbx
logbx

∣∣∣∣
= |logab| lim

x→∞

∣∣∣∣ logbx
logbx

∣∣∣∣
= |logab|
> 0

Therefore by theorem, logax ∈ O(logbx)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 38 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 03 Let a,b ∈ R+ − {1}, Prove logax is O(logbx)

Sol: Taking the limit

lim
x→∞

|logax |
|logbx |

= lim
x→∞

∣∣∣∣ logab × logbx
logbx

∣∣∣∣
= |logab| lim

x→∞

∣∣∣∣ logbx
logbx

∣∣∣∣
= |logab|
> 0

Therefore by theorem, logax ∈ O(logbx)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 38 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

How do you interpret the statement f /∈ O(g)?

That is how you negate the definition.

f ∈ O(g) iff there exist constants c and k such that for all x ≥ k then
|f (x)| ≤ c|g(x)|

The negation would the be f /∈ O(g) iff for all constants c and k , ∃ x
s.t. x ≥ k and |f (x)| > c|g(x)|

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 39 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

How do you interpret the statement f /∈ O(g)?

That is how you negate the definition.

f ∈ O(g) iff there exist constants c and k such that for all x ≥ k then
|f (x)| ≤ c|g(x)|

The negation would the be f /∈ O(g) iff for all constants c and k , ∃ x
s.t. x ≥ k and |f (x)| > c|g(x)|

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 39 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

How do you interpret the statement f /∈ O(g)?

That is how you negate the definition.

f ∈ O(g) iff there exist constants c and k such that for all x ≥ k then
|f (x)| ≤ c|g(x)|

The negation would the be f /∈ O(g) iff for all constants c and k , ∃ x
s.t. x ≥ k and |f (x)| > c|g(x)|

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 39 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

How do you interpret the statement f /∈ O(g)?

That is how you negate the definition.

f ∈ O(g) iff there exist constants c and k such that for all x ≥ k then
|f (x)| ≤ c|g(x)|

The negation would the be f /∈ O(g) iff for all constants c and k , ∃ x
s.t. x ≥ k and |f (x)| > c|g(x)|

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 39 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

How do you interpret the statement f /∈ O(g)?

That is how you negate the definition.

f ∈ O(g) iff there exist constants c and k such that for all x ≥ k then
|f (x)| ≤ c|g(x)|

The negation would the be f /∈ O(g) iff for all constants c and k , ∃ x
s.t. x ≥ k and |f (x)| > c|g(x)|

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 39 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem

If limx→∞
|f (x)|
|g(x)| =∞, then f is not O(g) (f /∈ O(g))

Proof: Suppose

lim
x→∞

|f (x)|
|g(x)|

=∞

Then for every c > 0,∃ N (> 0) s.t . |f (x)|
|g(x)| > c, if x ≥ N

Thus, for all c, k ≥ 0, ∃ x (≥ k) (take x greater than the larger of k and
N) s.t.

|f (x)|
|g(x)|

> c

|f (x)| > c|g(x)|

Thus f /∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 40 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem

If limx→∞
|f (x)|
|g(x)| =∞, then f is not O(g) (f /∈ O(g))

Proof: Suppose

lim
x→∞

|f (x)|
|g(x)|

=∞

Then for every c > 0,∃ N (> 0) s.t . |f (x)|
|g(x)| > c, if x ≥ N

Thus, for all c, k ≥ 0, ∃ x (≥ k) (take x greater than the larger of k and
N) s.t.

|f (x)|
|g(x)|

> c

|f (x)| > c|g(x)|

Thus f /∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 40 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem

If limx→∞
|f (x)|
|g(x)| =∞, then f is not O(g) (f /∈ O(g))

Proof: Suppose

lim
x→∞

|f (x)|
|g(x)|

=∞

Then for every c > 0,∃ N (> 0) s.t . |f (x)|
|g(x)| > c, if x ≥ N

Thus, for all c, k ≥ 0, ∃ x (≥ k) (take x greater than the larger of k and
N) s.t.

|f (x)|
|g(x)|

> c

|f (x)| > c|g(x)|

Thus f /∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 40 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem

If limx→∞
|f (x)|
|g(x)| =∞, then f is not O(g) (f /∈ O(g))

Proof: Suppose

lim
x→∞

|f (x)|
|g(x)|

=∞

Then for every c > 0,∃ N (> 0) s.t . |f (x)|
|g(x)| > c, if x ≥ N

Thus, for all c, k ≥ 0, ∃ x (≥ k) (take x greater than the larger of k and
N) s.t.

|f (x)|
|g(x)|

> c

|f (x)| > c|g(x)|

Thus f /∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 40 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem

If limx→∞
|f (x)|
|g(x)| =∞, then f is not O(g) (f /∈ O(g))

Proof: Suppose

lim
x→∞

|f (x)|
|g(x)|

=∞

Then for every c > 0,∃ N (> 0) s.t . |f (x)|
|g(x)| > c, if x ≥ N

Thus, for all c, k ≥ 0, ∃ x (≥ k) (take x greater than the larger of k and
N) s.t.

|f (x)|
|g(x)|

> c

|f (x)| > c|g(x)|

Thus f /∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 40 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem

If limx→∞
|f (x)|
|g(x)| =∞, then f is not O(g) (f /∈ O(g))

Proof: Suppose

lim
x→∞

|f (x)|
|g(x)|

=∞

Then for every c > 0,∃ N (> 0) s.t . |f (x)|
|g(x)| > c, if x ≥ N

Thus, for all c, k ≥ 0, ∃ x (≥ k) (take x greater than the larger of k and
N) s.t.

|f (x)|
|g(x)|

> c

|f (x)| > c|g(x)|

Thus f /∈ O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 40 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 is not O(x).

Sol: Take the limit

lim
x→∞

∣∣∣∣x2

x

∣∣∣∣ = lim
x→∞

|x | =∞

Thus by Theorem, x2 /∈ O(x)

E.g. 02 Show that x5 /∈ O(100x4).

Sol: Take the limit

lim
x→∞

∣∣∣∣ x5

100x4

∣∣∣∣ =
1

100
lim

x→∞
|x | =∞

Thus by Theorem, x5 /∈ O(100x4)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 41 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 is not O(x).

Sol: Take the limit

lim
x→∞

∣∣∣∣x2

x

∣∣∣∣ = lim
x→∞

|x | =∞

Thus by Theorem, x2 /∈ O(x)

E.g. 02 Show that x5 /∈ O(100x4).

Sol: Take the limit

lim
x→∞

∣∣∣∣ x5

100x4

∣∣∣∣ =
1

100
lim

x→∞
|x | =∞

Thus by Theorem, x5 /∈ O(100x4)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 41 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 is not O(x).

Sol: Take the limit

lim
x→∞

∣∣∣∣x2

x

∣∣∣∣ = lim
x→∞

|x | =∞

Thus by Theorem, x2 /∈ O(x)

E.g. 02 Show that x5 /∈ O(100x4).

Sol: Take the limit

lim
x→∞

∣∣∣∣ x5

100x4

∣∣∣∣ =
1

100
lim

x→∞
|x | =∞

Thus by Theorem, x5 /∈ O(100x4)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 41 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 is not O(x).

Sol: Take the limit

lim
x→∞

∣∣∣∣x2

x

∣∣∣∣ = lim
x→∞

|x | =∞

Thus by Theorem, x2 /∈ O(x)

E.g. 02 Show that x5 /∈ O(100x4).

Sol: Take the limit

lim
x→∞

∣∣∣∣ x5

100x4

∣∣∣∣ =
1

100
lim

x→∞
|x | =∞

Thus by Theorem, x5 /∈ O(100x4)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 41 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 is not O(x).

Sol: Take the limit

lim
x→∞

∣∣∣∣x2

x

∣∣∣∣ = lim
x→∞

|x | =∞

Thus by Theorem, x2 /∈ O(x)

E.g. 02 Show that x5 /∈ O(100x4).

Sol: Take the limit

lim
x→∞

∣∣∣∣ x5

100x4

∣∣∣∣ =
1

100
lim

x→∞
|x | =∞

Thus by Theorem, x5 /∈ O(100x4)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 41 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 is not O(x).

Sol: Take the limit

lim
x→∞

∣∣∣∣x2

x

∣∣∣∣ = lim
x→∞

|x | =∞

Thus by Theorem, x2 /∈ O(x)

E.g. 02 Show that x5 /∈ O(100x4).

Sol: Take the limit

lim
x→∞

∣∣∣∣ x5

100x4

∣∣∣∣ =
1

100
lim

x→∞
|x | =∞

Thus by Theorem, x5 /∈ O(100x4)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 41 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 is not O(x).

Sol: Take the limit

lim
x→∞

∣∣∣∣x2

x

∣∣∣∣ = lim
x→∞

|x | =∞

Thus by Theorem, x2 /∈ O(x)

E.g. 02 Show that x5 /∈ O(100x4).

Sol: Take the limit

lim
x→∞

∣∣∣∣ x5

100x4

∣∣∣∣ =
1

100
lim

x→∞
|x | =∞

Thus by Theorem, x5 /∈ O(100x4)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 41 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x2 is not O(x).

Sol: Take the limit

lim
x→∞

∣∣∣∣x2

x

∣∣∣∣ = lim
x→∞

|x | =∞

Thus by Theorem, x2 /∈ O(x)

E.g. 02 Show that x5 /∈ O(100x4).

Sol: Take the limit

lim
x→∞

∣∣∣∣ x5

100x4

∣∣∣∣ =
1

100
lim

x→∞
|x | =∞

Thus by Theorem, x5 /∈ O(100x4)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 41 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Little-o

Definition
If f and g are such that

lim
x→∞

f (x)

g(x)
= 0

then we say that f is little-o of g, written as f ∈ o(g)

L’Hôpital’s Rule would be more useful for some calculations,

L’Hôpital’s Rule

If lim
x→∞

f (x) =∞ and lim
x→∞

g(x) =∞,

and if lim
x→∞

f ′(x)

g′(x)
= L then lim

x→∞

f (x)

g(x)
= L

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 42 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Little-o

Definition
If f and g are such that

lim
x→∞

f (x)

g(x)
= 0

then we say that f is little-o of g, written as f ∈ o(g)

L’Hôpital’s Rule would be more useful for some calculations,

L’Hôpital’s Rule

If lim
x→∞

f (x) =∞ and lim
x→∞

g(x) =∞,

and if lim
x→∞

f ′(x)

g′(x)
= L then lim

x→∞

f (x)

g(x)
= L

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 42 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Little-o

Definition
If f and g are such that

lim
x→∞

f (x)

g(x)
= 0

then we say that f is little-o of g, written as f ∈ o(g)

L’Hôpital’s Rule would be more useful for some calculations,

L’Hôpital’s Rule

If lim
x→∞

f (x) =∞ and lim
x→∞

g(x) =∞,

and if lim
x→∞

f ′(x)

g′(x)
= L then lim

x→∞

f (x)

g(x)
= L

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 42 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Little-o

Definition
If f and g are such that

lim
x→∞

f (x)

g(x)
= 0

then we say that f is little-o of g, written as f ∈ o(g)

L’Hôpital’s Rule would be more useful for some calculations,

L’Hôpital’s Rule

If lim
x→∞

f (x) =∞ and lim
x→∞

g(x) =∞,

and if lim
x→∞

f ′(x)

g′(x)
= L then lim

x→∞

f (x)

g(x)
= L

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 42 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem
If f is o(g), then f is O(g)

E.g. 01 Show that logax ∈ O(x), where a is a positive number different
from 1.

Sol: Observe that limx→∞ logax =∞ and limx→∞ x =∞, therefore

lim
x→∞

logax
x

= lim
x→∞

d
dx (logax)

d
dx (x)

(L’Hôpital’s rule)

= lim
x→∞

1
xln(a)

= 0

Therefore logax ∈ o(x), and by the Theorem logax ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 43 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem
If f is o(g), then f is O(g)

E.g. 01 Show that logax ∈ O(x), where a is a positive number different
from 1.

Sol: Observe that limx→∞ logax =∞ and limx→∞ x =∞, therefore

lim
x→∞

logax
x

= lim
x→∞

d
dx (logax)

d
dx (x)

(L’Hôpital’s rule)

= lim
x→∞

1
xln(a)

= 0

Therefore logax ∈ o(x), and by the Theorem logax ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 43 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem
If f is o(g), then f is O(g)

E.g. 01 Show that logax ∈ O(x), where a is a positive number different
from 1.

Sol: Observe that limx→∞ logax =∞ and limx→∞ x =∞, therefore

lim
x→∞

logax
x

= lim
x→∞

d
dx (logax)

d
dx (x)

(L’Hôpital’s rule)

= lim
x→∞

1
xln(a)

= 0

Therefore logax ∈ o(x), and by the Theorem logax ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 43 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem
If f is o(g), then f is O(g)

E.g. 01 Show that logax ∈ O(x), where a is a positive number different
from 1.

Sol: Observe that limx→∞ logax =∞ and limx→∞ x =∞, therefore

lim
x→∞

logax
x

= lim
x→∞

d
dx (logax)

d
dx (x)

(L’Hôpital’s rule)

= lim
x→∞

1
xln(a)

= 0

Therefore logax ∈ o(x), and by the Theorem logax ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 43 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem
If f is o(g), then f is O(g)

E.g. 01 Show that logax ∈ O(x), where a is a positive number different
from 1.

Sol: Observe that limx→∞ logax =∞ and limx→∞ x =∞, therefore

lim
x→∞

logax
x

= lim
x→∞

d
dx (logax)

d
dx (x)

(L’Hôpital’s rule)

= lim
x→∞

1
xln(a)

= 0

Therefore logax ∈ o(x), and by the Theorem logax ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 43 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem
If f is o(g), then f is O(g)

E.g. 01 Show that logax ∈ O(x), where a is a positive number different
from 1.

Sol: Observe that limx→∞ logax =∞ and limx→∞ x =∞, therefore

lim
x→∞

logax
x

= lim
x→∞

d
dx (logax)

d
dx (x)

(L’Hôpital’s rule)

= lim
x→∞

1
xln(a)

= 0

Therefore logax ∈ o(x), and by the Theorem logax ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 43 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem
If f is o(g), then f is O(g)

E.g. 01 Show that logax ∈ O(x), where a is a positive number different
from 1.

Sol: Observe that limx→∞ logax =∞ and limx→∞ x =∞, therefore

lim
x→∞

logax
x

= lim
x→∞

d
dx (logax)

d
dx (x)

(L’Hôpital’s rule)

= lim
x→∞

1
xln(a)

= 0

Therefore logax ∈ o(x), and by the Theorem logax ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 43 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that if a > 1 then xn ∈ O(ax)

Sol: Observe that limx→∞ xn =∞ and limx→∞ ax =∞, then applying
L’Hôpital’s rule

lim
x→∞

xn

ax = lim
x→∞

d
dx (xn)
d
dx (ax)

= lim
x→∞

nxn−1

ax ln(a)

=
n

ln(a)
lim

x→∞

xn−1

ax

Apply the same rule again

=
n(n − 1)

ln(a)2 lim
x→∞

xn−2

ax

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 44 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that if a > 1 then xn ∈ O(ax)

Sol: Observe that limx→∞ xn =∞ and limx→∞ ax =∞, then applying
L’Hôpital’s rule

lim
x→∞

xn

ax = lim
x→∞

d
dx (xn)
d
dx (ax)

= lim
x→∞

nxn−1

ax ln(a)

=
n

ln(a)
lim

x→∞

xn−1

ax

Apply the same rule again

=
n(n − 1)

ln(a)2 lim
x→∞

xn−2

ax

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 44 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that if a > 1 then xn ∈ O(ax)

Sol: Observe that limx→∞ xn =∞ and limx→∞ ax =∞, then applying
L’Hôpital’s rule

lim
x→∞

xn

ax = lim
x→∞

d
dx (xn)
d
dx (ax)

= lim
x→∞

nxn−1

ax ln(a)

=
n

ln(a)
lim

x→∞

xn−1

ax

Apply the same rule again

=
n(n − 1)

ln(a)2 lim
x→∞

xn−2

ax

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 44 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that if a > 1 then xn ∈ O(ax)

Sol: Observe that limx→∞ xn =∞ and limx→∞ ax =∞, then applying
L’Hôpital’s rule

lim
x→∞

xn

ax = lim
x→∞

d
dx (xn)
d
dx (ax)

= lim
x→∞

nxn−1

ax ln(a)

=
n

ln(a)
lim

x→∞

xn−1

ax

Apply the same rule again

=
n(n − 1)

ln(a)2 lim
x→∞

xn−2

ax

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 44 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that if a > 1 then xn ∈ O(ax)

Sol: Observe that limx→∞ xn =∞ and limx→∞ ax =∞, then applying
L’Hôpital’s rule

lim
x→∞

xn

ax = lim
x→∞

d
dx (xn)
d
dx (ax)

= lim
x→∞

nxn−1

ax ln(a)

=
n

ln(a)
lim

x→∞

xn−1

ax

Apply the same rule again

=
n(n − 1)

ln(a)2 lim
x→∞

xn−2

ax

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 44 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that if a > 1 then xn ∈ O(ax)

Sol: Observe that limx→∞ xn =∞ and limx→∞ ax =∞, then applying
L’Hôpital’s rule

lim
x→∞

xn

ax = lim
x→∞

d
dx (xn)
d
dx (ax)

= lim
x→∞

nxn−1

ax ln(a)

=
n

ln(a)
lim

x→∞

xn−1

ax

Apply the same rule again

=
n(n − 1)

ln(a)2 lim
x→∞

xn−2

ax

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 44 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that if a > 1 then xn ∈ O(ax)

Sol: Observe that limx→∞ xn =∞ and limx→∞ ax =∞, then applying
L’Hôpital’s rule

lim
x→∞

xn

ax = lim
x→∞

d
dx (xn)
d
dx (ax)

= lim
x→∞

nxn−1

ax ln(a)

=
n

ln(a)
lim

x→∞

xn−1

ax

Apply the same rule again

=
n(n − 1)

ln(a)2 lim
x→∞

xn−2

ax

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 44 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

lim
x→∞

xn

ax =
n(n − 1)(n − 2)

ln(a)3 lim
x→∞

xn−3

ax

=
n(n − 1)(n − 2)...(1)

ln(a)n lim
x→∞

x0

ax

=
n!

ln(a)n lim
x→∞

1
ax

= 0

Then xn ∈ o(ax), Therefore by the theorem xn ∈ O(ax)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 45 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

lim
x→∞

xn

ax =
n(n − 1)(n − 2)

ln(a)3 lim
x→∞

xn−3

ax

=
n(n − 1)(n − 2)...(1)

ln(a)n lim
x→∞

x0

ax

=
n!

ln(a)n lim
x→∞

1
ax

= 0

Then xn ∈ o(ax), Therefore by the theorem xn ∈ O(ax)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 45 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

lim
x→∞

xn

ax =
n(n − 1)(n − 2)

ln(a)3 lim
x→∞

xn−3

ax

=
n(n − 1)(n − 2)...(1)

ln(a)n lim
x→∞

x0

ax

=
n!

ln(a)n lim
x→∞

1
ax

= 0

Then xn ∈ o(ax), Therefore by the theorem xn ∈ O(ax)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 45 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

lim
x→∞

xn

ax =
n(n − 1)(n − 2)

ln(a)3 lim
x→∞

xn−3

ax

=
n(n − 1)(n − 2)...(1)

ln(a)n lim
x→∞

x0

ax

=
n!

ln(a)n lim
x→∞

1
ax

= 0

Then xn ∈ o(ax), Therefore by the theorem xn ∈ O(ax)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 45 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

lim
x→∞

xn

ax =
n(n − 1)(n − 2)

ln(a)3 lim
x→∞

xn−3

ax

=
n(n − 1)(n − 2)...(1)

ln(a)n lim
x→∞

x0

ax

=
n!

ln(a)n lim
x→∞

1
ax

= 0

Then xn ∈ o(ax), Therefore by the theorem xn ∈ O(ax)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 45 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Basic Properties of Big-O

The following theorems and facts will be helpful in determining big-O

Theorem
A polynomial of degree n is O(xn)

Proof : (Exercise)

Theorem
If f1 is O(g1) and f2 is O(g2), then f1 + f2 is O(max{|g1| , |g2|})

Proof : If f1 ∈ O(g1), then |f1(x)| ≤ c1 |g1(x)| for c1 > 0 and x ≥ k1

If f2 ∈ O(g2), then |f2(x)| ≤ c2 |g2(x)| for c2 > 0 and x ≥ k2

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 46 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Basic Properties of Big-O

The following theorems and facts will be helpful in determining big-O

Theorem
A polynomial of degree n is O(xn)

Proof : (Exercise)

Theorem
If f1 is O(g1) and f2 is O(g2), then f1 + f2 is O(max{|g1| , |g2|})

Proof : If f1 ∈ O(g1), then |f1(x)| ≤ c1 |g1(x)| for c1 > 0 and x ≥ k1

If f2 ∈ O(g2), then |f2(x)| ≤ c2 |g2(x)| for c2 > 0 and x ≥ k2

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 46 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Basic Properties of Big-O

The following theorems and facts will be helpful in determining big-O

Theorem
A polynomial of degree n is O(xn)

Proof : (Exercise)

Theorem
If f1 is O(g1) and f2 is O(g2), then f1 + f2 is O(max{|g1| , |g2|})

Proof : If f1 ∈ O(g1), then |f1(x)| ≤ c1 |g1(x)| for c1 > 0 and x ≥ k1

If f2 ∈ O(g2), then |f2(x)| ≤ c2 |g2(x)| for c2 > 0 and x ≥ k2

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 46 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Basic Properties of Big-O

The following theorems and facts will be helpful in determining big-O

Theorem
A polynomial of degree n is O(xn)

Proof : (Exercise)

Theorem
If f1 is O(g1) and f2 is O(g2), then f1 + f2 is O(max{|g1| , |g2|})

Proof : If f1 ∈ O(g1), then |f1(x)| ≤ c1 |g1(x)| for c1 > 0 and x ≥ k1

If f2 ∈ O(g2), then |f2(x)| ≤ c2 |g2(x)| for c2 > 0 and x ≥ k2

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 46 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Taking h(x) = max(|g1(x)| , |g2(x)|) for x ≥ max(k1, k2)

Then, |f1(x)| ≤ c1h(x) and |f2(x)| ≤ c2h(x)

Therefore, |f1(x)|+ |f2(x)| ≤ (c1 + c2)h(x)

By triangular inequality, |f1(x) + f2(x)| ≤ |f1(x)|+ |f2(x)|
Then, |f1(x) + f2(x)| ≤ (c1 + c2)h(x)

Then, |f1(x) + f2(x)| ≤ ch(x) where c = c1 + c2

Therefore, f1 + f2 ∈ O(max |g1| , |g2|)

Corollary

If f1 and f2 are both O(g) then (f1 + f2) is O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 47 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Taking h(x) = max(|g1(x)| , |g2(x)|) for x ≥ max(k1, k2)

Then, |f1(x)| ≤ c1h(x) and |f2(x)| ≤ c2h(x)

Therefore, |f1(x)|+ |f2(x)| ≤ (c1 + c2)h(x)

By triangular inequality, |f1(x) + f2(x)| ≤ |f1(x)|+ |f2(x)|
Then, |f1(x) + f2(x)| ≤ (c1 + c2)h(x)

Then, |f1(x) + f2(x)| ≤ ch(x) where c = c1 + c2

Therefore, f1 + f2 ∈ O(max |g1| , |g2|)

Corollary

If f1 and f2 are both O(g) then (f1 + f2) is O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 47 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Taking h(x) = max(|g1(x)| , |g2(x)|) for x ≥ max(k1, k2)

Then, |f1(x)| ≤ c1h(x) and |f2(x)| ≤ c2h(x)

Therefore, |f1(x)|+ |f2(x)| ≤ (c1 + c2)h(x)

By triangular inequality, |f1(x) + f2(x)| ≤ |f1(x)|+ |f2(x)|
Then, |f1(x) + f2(x)| ≤ (c1 + c2)h(x)

Then, |f1(x) + f2(x)| ≤ ch(x) where c = c1 + c2

Therefore, f1 + f2 ∈ O(max |g1| , |g2|)

Corollary

If f1 and f2 are both O(g) then (f1 + f2) is O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 47 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Taking h(x) = max(|g1(x)| , |g2(x)|) for x ≥ max(k1, k2)

Then, |f1(x)| ≤ c1h(x) and |f2(x)| ≤ c2h(x)

Therefore, |f1(x)|+ |f2(x)| ≤ (c1 + c2)h(x)

By triangular inequality, |f1(x) + f2(x)| ≤ |f1(x)|+ |f2(x)|
Then, |f1(x) + f2(x)| ≤ (c1 + c2)h(x)

Then, |f1(x) + f2(x)| ≤ ch(x) where c = c1 + c2

Therefore, f1 + f2 ∈ O(max |g1| , |g2|)

Corollary

If f1 and f2 are both O(g) then (f1 + f2) is O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 47 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Taking h(x) = max(|g1(x)| , |g2(x)|) for x ≥ max(k1, k2)

Then, |f1(x)| ≤ c1h(x) and |f2(x)| ≤ c2h(x)

Therefore, |f1(x)|+ |f2(x)| ≤ (c1 + c2)h(x)

By triangular inequality, |f1(x) + f2(x)| ≤ |f1(x)|+ |f2(x)|
Then, |f1(x) + f2(x)| ≤ (c1 + c2)h(x)

Then, |f1(x) + f2(x)| ≤ ch(x) where c = c1 + c2

Therefore, f1 + f2 ∈ O(max |g1| , |g2|)

Corollary

If f1 and f2 are both O(g) then (f1 + f2) is O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 47 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Taking h(x) = max(|g1(x)| , |g2(x)|) for x ≥ max(k1, k2)

Then, |f1(x)| ≤ c1h(x) and |f2(x)| ≤ c2h(x)

Therefore, |f1(x)|+ |f2(x)| ≤ (c1 + c2)h(x)

By triangular inequality, |f1(x) + f2(x)| ≤ |f1(x)|+ |f2(x)|
Then, |f1(x) + f2(x)| ≤ (c1 + c2)h(x)

Then, |f1(x) + f2(x)| ≤ ch(x) where c = c1 + c2

Therefore, f1 + f2 ∈ O(max |g1| , |g2|)

Corollary

If f1 and f2 are both O(g) then (f1 + f2) is O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 47 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Taking h(x) = max(|g1(x)| , |g2(x)|) for x ≥ max(k1, k2)

Then, |f1(x)| ≤ c1h(x) and |f2(x)| ≤ c2h(x)

Therefore, |f1(x)|+ |f2(x)| ≤ (c1 + c2)h(x)

By triangular inequality, |f1(x) + f2(x)| ≤ |f1(x)|+ |f2(x)|
Then, |f1(x) + f2(x)| ≤ (c1 + c2)h(x)

Then, |f1(x) + f2(x)| ≤ ch(x) where c = c1 + c2

Therefore, f1 + f2 ∈ O(max |g1| , |g2|)

Corollary

If f1 and f2 are both O(g) then (f1 + f2) is O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 47 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Taking h(x) = max(|g1(x)| , |g2(x)|) for x ≥ max(k1, k2)

Then, |f1(x)| ≤ c1h(x) and |f2(x)| ≤ c2h(x)

Therefore, |f1(x)|+ |f2(x)| ≤ (c1 + c2)h(x)

By triangular inequality, |f1(x) + f2(x)| ≤ |f1(x)|+ |f2(x)|
Then, |f1(x) + f2(x)| ≤ (c1 + c2)h(x)

Then, |f1(x) + f2(x)| ≤ ch(x) where c = c1 + c2

Therefore, f1 + f2 ∈ O(max |g1| , |g2|)

Corollary

If f1 and f2 are both O(g) then (f1 + f2) is O(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 47 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem
If f1 is O(g1) and f2 is O(g2), then f1f2 is O(g1g2)

Proof : (Exercise)

Theorem
If f1 is O(f2) and f2 is O(f3), then f1 is O(f3)

Proof : (Exercise)

Theorem
If f is O(g), then (af) is O(g) for any constant a

Proof : (Exercise)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 48 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem
If f1 is O(g1) and f2 is O(g2), then f1f2 is O(g1g2)

Proof : (Exercise)

Theorem
If f1 is O(f2) and f2 is O(f3), then f1 is O(f3)

Proof : (Exercise)

Theorem
If f is O(g), then (af) is O(g) for any constant a

Proof : (Exercise)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 48 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Theorem
If f1 is O(g1) and f2 is O(g2), then f1f2 is O(g1g2)

Proof : (Exercise)

Theorem
If f1 is O(f2) and f2 is O(f3), then f1 is O(f3)

Proof : (Exercise)

Theorem
If f is O(g), then (af) is O(g) for any constant a

Proof : (Exercise)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 48 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Find the least integer n such that (x4+5log(x))
(x3+1)

is O(xn)

Sol: Take (x4+5log(x))
(x3+1)

= x4

x3+1 + 5log(x)
x3+1

First consider x4

x3+1 . And taking the limit,

lim
x→∞

x4/(x3 + 1)

xn = lim
x→∞

1/(x3 + 1)

xn−4

= lim
x→∞

1
xn−1 + xn−4

= lim
x→∞

1/xn−1

1 + 1/x3

Observe that when n < 1, limx→∞
1/xn−1

1+1/x3 =∞

Thus when n < 1, x4

x3+1 /∈ O(xn)
Therefore when n = 1 the least n, where limit exist. Hence

x4

x3+1 ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 49 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Find the least integer n such that (x4+5log(x))
(x3+1)

is O(xn)

Sol: Take (x4+5log(x))
(x3+1)

= x4

x3+1 + 5log(x)
x3+1

First consider x4

x3+1 . And taking the limit,

lim
x→∞

x4/(x3 + 1)

xn = lim
x→∞

1/(x3 + 1)

xn−4

= lim
x→∞

1
xn−1 + xn−4

= lim
x→∞

1/xn−1

1 + 1/x3

Observe that when n < 1, limx→∞
1/xn−1

1+1/x3 =∞

Thus when n < 1, x4

x3+1 /∈ O(xn)
Therefore when n = 1 the least n, where limit exist. Hence

x4

x3+1 ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 49 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Find the least integer n such that (x4+5log(x))
(x3+1)

is O(xn)

Sol: Take (x4+5log(x))
(x3+1)

= x4

x3+1 + 5log(x)
x3+1

First consider x4

x3+1 . And taking the limit,

lim
x→∞

x4/(x3 + 1)

xn = lim
x→∞

1/(x3 + 1)

xn−4

= lim
x→∞

1
xn−1 + xn−4

= lim
x→∞

1/xn−1

1 + 1/x3

Observe that when n < 1, limx→∞
1/xn−1

1+1/x3 =∞

Thus when n < 1, x4

x3+1 /∈ O(xn)
Therefore when n = 1 the least n, where limit exist. Hence

x4

x3+1 ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 49 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Find the least integer n such that (x4+5log(x))
(x3+1)

is O(xn)

Sol: Take (x4+5log(x))
(x3+1)

= x4

x3+1 + 5log(x)
x3+1

First consider x4

x3+1 . And taking the limit,

lim
x→∞

x4/(x3 + 1)

xn = lim
x→∞

1/(x3 + 1)

xn−4

= lim
x→∞

1
xn−1 + xn−4

= lim
x→∞

1/xn−1

1 + 1/x3

Observe that when n < 1, limx→∞
1/xn−1

1+1/x3 =∞

Thus when n < 1, x4

x3+1 /∈ O(xn)
Therefore when n = 1 the least n, where limit exist. Hence

x4

x3+1 ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 49 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Find the least integer n such that (x4+5log(x))
(x3+1)

is O(xn)

Sol: Take (x4+5log(x))
(x3+1)

= x4

x3+1 + 5log(x)
x3+1

First consider x4

x3+1 . And taking the limit,

lim
x→∞

x4/(x3 + 1)

xn = lim
x→∞

1/(x3 + 1)

xn−4

= lim
x→∞

1
xn−1 + xn−4

= lim
x→∞

1/xn−1

1 + 1/x3

Observe that when n < 1, limx→∞
1/xn−1

1+1/x3 =∞

Thus when n < 1, x4

x3+1 /∈ O(xn)
Therefore when n = 1 the least n, where limit exist. Hence

x4

x3+1 ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 49 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Find the least integer n such that (x4+5log(x))
(x3+1)

is O(xn)

Sol: Take (x4+5log(x))
(x3+1)

= x4

x3+1 + 5log(x)
x3+1

First consider x4

x3+1 . And taking the limit,

lim
x→∞

x4/(x3 + 1)

xn = lim
x→∞

1/(x3 + 1)

xn−4

= lim
x→∞

1
xn−1 + xn−4

= lim
x→∞

1/xn−1

1 + 1/x3

Observe that when n < 1, limx→∞
1/xn−1

1+1/x3 =∞

Thus when n < 1, x4

x3+1 /∈ O(xn)
Therefore when n = 1 the least n, where limit exist. Hence

x4

x3+1 ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 49 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Find the least integer n such that (x4+5log(x))
(x3+1)

is O(xn)

Sol: Take (x4+5log(x))
(x3+1)

= x4

x3+1 + 5log(x)
x3+1

First consider x4

x3+1 . And taking the limit,

lim
x→∞

x4/(x3 + 1)

xn = lim
x→∞

1/(x3 + 1)

xn−4

= lim
x→∞

1
xn−1 + xn−4

= lim
x→∞

1/xn−1

1 + 1/x3

Observe that when n < 1, limx→∞
1/xn−1

1+1/x3 =∞

Thus when n < 1, x4

x3+1 /∈ O(xn)
Therefore when n = 1 the least n, where limit exist. Hence

x4

x3+1 ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 49 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Find the least integer n such that (x4+5log(x))
(x3+1)

is O(xn)

Sol: Take (x4+5log(x))
(x3+1)

= x4

x3+1 + 5log(x)
x3+1

First consider x4

x3+1 . And taking the limit,

lim
x→∞

x4/(x3 + 1)

xn = lim
x→∞

1/(x3 + 1)

xn−4

= lim
x→∞

1
xn−1 + xn−4

= lim
x→∞

1/xn−1

1 + 1/x3

Observe that when n < 1, limx→∞
1/xn−1

1+1/x3 =∞

Thus when n < 1, x4

x3+1 /∈ O(xn)
Therefore when n = 1 the least n, where limit exist. Hence

x4

x3+1 ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 49 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Find the least integer n such that (x4+5log(x))
(x3+1)

is O(xn)

Sol: Take (x4+5log(x))
(x3+1)

= x4

x3+1 + 5log(x)
x3+1

First consider x4

x3+1 . And taking the limit,

lim
x→∞

x4/(x3 + 1)

xn = lim
x→∞

1/(x3 + 1)

xn−4

= lim
x→∞

1
xn−1 + xn−4

= lim
x→∞

1/xn−1

1 + 1/x3

Observe that when n < 1, limx→∞
1/xn−1

1+1/x3 =∞

Thus when n < 1, x4

x3+1 /∈ O(xn)
Therefore when n = 1 the least n, where limit exist. Hence

x4

x3+1 ∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 49 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Now consider 5log(x)
x3+1

And take the limit, when n = 1,

lim
x→∞

5log(x)/(x3 + 1)

x1 = 5 lim
x→∞

log(x)

x4 + x

Since limx→∞ log(x) =∞ and limx→∞ x4 + x =∞, Apply L’Hôpital’s
rule

5 lim
x→∞

log(x)

x4 + x
= 5 lim

x→∞

d
dx (log(x))
d
dx (x4 + x)

= 5 lim
x→∞

1/(xln(10))

4x3 + 1

= 5ln(10) lim
x→∞

1/x4

4 + 1/x3

= 0

Therefore 5log(x)
x3+1 ∈ O(x), Hence x4

x3+1 + 5log(x)
x3+1 = (x4+5log(x))

(x3+1)
∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 50 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Now consider 5log(x)
x3+1

And take the limit, when n = 1,

lim
x→∞

5log(x)/(x3 + 1)

x1 = 5 lim
x→∞

log(x)

x4 + x

Since limx→∞ log(x) =∞ and limx→∞ x4 + x =∞, Apply L’Hôpital’s
rule

5 lim
x→∞

log(x)

x4 + x
= 5 lim

x→∞

d
dx (log(x))
d
dx (x4 + x)

= 5 lim
x→∞

1/(xln(10))

4x3 + 1

= 5ln(10) lim
x→∞

1/x4

4 + 1/x3

= 0

Therefore 5log(x)
x3+1 ∈ O(x), Hence x4

x3+1 + 5log(x)
x3+1 = (x4+5log(x))

(x3+1)
∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 50 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Now consider 5log(x)
x3+1

And take the limit, when n = 1,

lim
x→∞

5log(x)/(x3 + 1)

x1 = 5 lim
x→∞

log(x)

x4 + x

Since limx→∞ log(x) =∞ and limx→∞ x4 + x =∞, Apply L’Hôpital’s
rule

5 lim
x→∞

log(x)

x4 + x
= 5 lim

x→∞

d
dx (log(x))
d
dx (x4 + x)

= 5 lim
x→∞

1/(xln(10))

4x3 + 1

= 5ln(10) lim
x→∞

1/x4

4 + 1/x3

= 0

Therefore 5log(x)
x3+1 ∈ O(x), Hence x4

x3+1 + 5log(x)
x3+1 = (x4+5log(x))

(x3+1)
∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 50 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Now consider 5log(x)
x3+1

And take the limit, when n = 1,

lim
x→∞

5log(x)/(x3 + 1)

x1 = 5 lim
x→∞

log(x)

x4 + x

Since limx→∞ log(x) =∞ and limx→∞ x4 + x =∞, Apply L’Hôpital’s
rule

5 lim
x→∞

log(x)

x4 + x
= 5 lim

x→∞

d
dx (log(x))
d
dx (x4 + x)

= 5 lim
x→∞

1/(xln(10))

4x3 + 1

= 5ln(10) lim
x→∞

1/x4

4 + 1/x3

= 0

Therefore 5log(x)
x3+1 ∈ O(x), Hence x4

x3+1 + 5log(x)
x3+1 = (x4+5log(x))

(x3+1)
∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 50 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Now consider 5log(x)
x3+1

And take the limit, when n = 1,

lim
x→∞

5log(x)/(x3 + 1)

x1 = 5 lim
x→∞

log(x)

x4 + x

Since limx→∞ log(x) =∞ and limx→∞ x4 + x =∞, Apply L’Hôpital’s
rule

5 lim
x→∞

log(x)

x4 + x
= 5 lim

x→∞

d
dx (log(x))
d
dx (x4 + x)

= 5 lim
x→∞

1/(xln(10))

4x3 + 1

= 5ln(10) lim
x→∞

1/x4

4 + 1/x3

= 0

Therefore 5log(x)
x3+1 ∈ O(x), Hence x4

x3+1 + 5log(x)
x3+1 = (x4+5log(x))

(x3+1)
∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 50 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Now consider 5log(x)
x3+1

And take the limit, when n = 1,

lim
x→∞

5log(x)/(x3 + 1)

x1 = 5 lim
x→∞

log(x)

x4 + x

Since limx→∞ log(x) =∞ and limx→∞ x4 + x =∞, Apply L’Hôpital’s
rule

5 lim
x→∞

log(x)

x4 + x
= 5 lim

x→∞

d
dx (log(x))
d
dx (x4 + x)

= 5 lim
x→∞

1/(xln(10))

4x3 + 1

= 5ln(10) lim
x→∞

1/x4

4 + 1/x3

= 0

Therefore 5log(x)
x3+1 ∈ O(x), Hence x4

x3+1 + 5log(x)
x3+1 = (x4+5log(x))

(x3+1)
∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 50 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Now consider 5log(x)
x3+1

And take the limit, when n = 1,

lim
x→∞

5log(x)/(x3 + 1)

x1 = 5 lim
x→∞

log(x)

x4 + x

Since limx→∞ log(x) =∞ and limx→∞ x4 + x =∞, Apply L’Hôpital’s
rule

5 lim
x→∞

log(x)

x4 + x
= 5 lim

x→∞

d
dx (log(x))
d
dx (x4 + x)

= 5 lim
x→∞

1/(xln(10))

4x3 + 1

= 5ln(10) lim
x→∞

1/x4

4 + 1/x3

= 0

Therefore 5log(x)
x3+1 ∈ O(x), Hence x4

x3+1 + 5log(x)
x3+1 = (x4+5log(x))

(x3+1)
∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 50 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Now consider 5log(x)
x3+1

And take the limit, when n = 1,

lim
x→∞

5log(x)/(x3 + 1)

x1 = 5 lim
x→∞

log(x)

x4 + x

Since limx→∞ log(x) =∞ and limx→∞ x4 + x =∞, Apply L’Hôpital’s
rule

5 lim
x→∞

log(x)

x4 + x
= 5 lim

x→∞

d
dx (log(x))
d
dx (x4 + x)

= 5 lim
x→∞

1/(xln(10))

4x3 + 1

= 5ln(10) lim
x→∞

1/x4

4 + 1/x3

= 0

Therefore 5log(x)
x3+1 ∈ O(x), Hence x4

x3+1 + 5log(x)
x3+1 = (x4+5log(x))

(x3+1)
∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 50 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Now consider 5log(x)
x3+1

And take the limit, when n = 1,

lim
x→∞

5log(x)/(x3 + 1)

x1 = 5 lim
x→∞

log(x)

x4 + x

Since limx→∞ log(x) =∞ and limx→∞ x4 + x =∞, Apply L’Hôpital’s
rule

5 lim
x→∞

log(x)

x4 + x
= 5 lim

x→∞

d
dx (log(x))
d
dx (x4 + x)

= 5 lim
x→∞

1/(xln(10))

4x3 + 1

= 5ln(10) lim
x→∞

1/x4

4 + 1/x3

= 0

Therefore 5log(x)
x3+1 ∈ O(x), Hence x4

x3+1 + 5log(x)
x3+1 = (x4+5log(x))

(x3+1)
∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 50 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Now consider 5log(x)
x3+1

And take the limit, when n = 1,

lim
x→∞

5log(x)/(x3 + 1)

x1 = 5 lim
x→∞

log(x)

x4 + x

Since limx→∞ log(x) =∞ and limx→∞ x4 + x =∞, Apply L’Hôpital’s
rule

5 lim
x→∞

log(x)

x4 + x
= 5 lim

x→∞

d
dx (log(x))
d
dx (x4 + x)

= 5 lim
x→∞

1/(xln(10))

4x3 + 1

= 5ln(10) lim
x→∞

1/x4

4 + 1/x3

= 0

Therefore 5log(x)
x3+1 ∈ O(x), Hence x4

x3+1 + 5log(x)
x3+1 = (x4+5log(x))

(x3+1)
∈ O(x)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 50 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Big-Omega

Definition
f is Big-Omega of g, denoted by f ∈ Ω(g) if there are positive
constants c and k such that

|f (x)| ≥ c |g(x)| for x > k

Big − Ω is very similar to Big −O
Big − Ω is used to indicate a lower bound on functions for large
values of the independent variable
Notice that f is Ω(g) if and only if g is O(f)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 51 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Big-Omega

Definition
f is Big-Omega of g, denoted by f ∈ Ω(g) if there are positive
constants c and k such that

|f (x)| ≥ c |g(x)| for x > k

Big − Ω is very similar to Big −O
Big − Ω is used to indicate a lower bound on functions for large
values of the independent variable
Notice that f is Ω(g) if and only if g is O(f)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 51 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Big-Omega

Definition
f is Big-Omega of g, denoted by f ∈ Ω(g) if there are positive
constants c and k such that

|f (x)| ≥ c |g(x)| for x > k

Big − Ω is very similar to Big −O
Big − Ω is used to indicate a lower bound on functions for large
values of the independent variable
Notice that f is Ω(g) if and only if g is O(f)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 51 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Big-Omega

Definition
f is Big-Omega of g, denoted by f ∈ Ω(g) if there are positive
constants c and k such that

|f (x)| ≥ c |g(x)| for x > k

Big − Ω is very similar to Big −O
Big − Ω is used to indicate a lower bound on functions for large
values of the independent variable
Notice that f is Ω(g) if and only if g is O(f)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 51 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Big-Omega

Definition
f is Big-Omega of g, denoted by f ∈ Ω(g) if there are positive
constants c and k such that

|f (x)| ≥ c |g(x)| for x > k

Big − Ω is very similar to Big −O
Big − Ω is used to indicate a lower bound on functions for large
values of the independent variable
Notice that f is Ω(g) if and only if g is O(f)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 51 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x is Ω(log(x))

Sol:
Take limx→∞

log(x)
x

But since limx→∞ log(x) =∞ and limx→∞ x =∞
Apply L’Hôpital’s rule,

lim
x→∞

log(x)

x
= lim

x→∞

d
dx (log(x))

d
dx (x)

= lim
x→∞

log(e)
1
x

= 0

Therefore log(x) ∈ o(x), then log(x) ∈ O(x)

Hence x ∈ Ω(log(x))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 52 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x is Ω(log(x))

Sol:
Take limx→∞

log(x)
x

But since limx→∞ log(x) =∞ and limx→∞ x =∞
Apply L’Hôpital’s rule,

lim
x→∞

log(x)

x
= lim

x→∞

d
dx (log(x))

d
dx (x)

= lim
x→∞

log(e)
1
x

= 0

Therefore log(x) ∈ o(x), then log(x) ∈ O(x)

Hence x ∈ Ω(log(x))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 52 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x is Ω(log(x))

Sol:
Take limx→∞

log(x)
x

But since limx→∞ log(x) =∞ and limx→∞ x =∞
Apply L’Hôpital’s rule,

lim
x→∞

log(x)

x
= lim

x→∞

d
dx (log(x))

d
dx (x)

= lim
x→∞

log(e)
1
x

= 0

Therefore log(x) ∈ o(x), then log(x) ∈ O(x)

Hence x ∈ Ω(log(x))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 52 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x is Ω(log(x))

Sol:
Take limx→∞

log(x)
x

But since limx→∞ log(x) =∞ and limx→∞ x =∞
Apply L’Hôpital’s rule,

lim
x→∞

log(x)

x
= lim

x→∞

d
dx (log(x))

d
dx (x)

= lim
x→∞

log(e)
1
x

= 0

Therefore log(x) ∈ o(x), then log(x) ∈ O(x)

Hence x ∈ Ω(log(x))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 52 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x is Ω(log(x))

Sol:
Take limx→∞

log(x)
x

But since limx→∞ log(x) =∞ and limx→∞ x =∞
Apply L’Hôpital’s rule,

lim
x→∞

log(x)

x
= lim

x→∞

d
dx (log(x))

d
dx (x)

= lim
x→∞

log(e)
1
x

= 0

Therefore log(x) ∈ o(x), then log(x) ∈ O(x)

Hence x ∈ Ω(log(x))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 52 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x is Ω(log(x))

Sol:
Take limx→∞

log(x)
x

But since limx→∞ log(x) =∞ and limx→∞ x =∞
Apply L’Hôpital’s rule,

lim
x→∞

log(x)

x
= lim

x→∞

d
dx (log(x))

d
dx (x)

= lim
x→∞

log(e)
1
x

= 0

Therefore log(x) ∈ o(x), then log(x) ∈ O(x)

Hence x ∈ Ω(log(x))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 52 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x is Ω(log(x))

Sol:
Take limx→∞

log(x)
x

But since limx→∞ log(x) =∞ and limx→∞ x =∞
Apply L’Hôpital’s rule,

lim
x→∞

log(x)

x
= lim

x→∞

d
dx (log(x))

d
dx (x)

= lim
x→∞

log(e)
1
x

= 0

Therefore log(x) ∈ o(x), then log(x) ∈ O(x)

Hence x ∈ Ω(log(x))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 52 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x is Ω(log(x))

Sol:
Take limx→∞

log(x)
x

But since limx→∞ log(x) =∞ and limx→∞ x =∞
Apply L’Hôpital’s rule,

lim
x→∞

log(x)

x
= lim

x→∞

d
dx (log(x))

d
dx (x)

= lim
x→∞

log(e)
1
x

= 0

Therefore log(x) ∈ o(x), then log(x) ∈ O(x)

Hence x ∈ Ω(log(x))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 52 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x is Ω(log(x))

Sol:
Take limx→∞

log(x)
x

But since limx→∞ log(x) =∞ and limx→∞ x =∞
Apply L’Hôpital’s rule,

lim
x→∞

log(x)

x
= lim

x→∞

d
dx (log(x))

d
dx (x)

= lim
x→∞

log(e)
1
x

= 0

Therefore log(x) ∈ o(x), then log(x) ∈ O(x)

Hence x ∈ Ω(log(x))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 52 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that x is Ω(log(x))

Sol:
Take limx→∞

log(x)
x

But since limx→∞ log(x) =∞ and limx→∞ x =∞
Apply L’Hôpital’s rule,

lim
x→∞

log(x)

x
= lim

x→∞

d
dx (log(x))

d
dx (x)

= lim
x→∞

log(e)
1
x

= 0

Therefore log(x) ∈ o(x), then log(x) ∈ O(x)

Hence x ∈ Ω(log(x))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 52 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that 2x3 + x2 − 3x + 2 is Ω(x3) using definition of
Big − Ω

Sol:
Let, x ≥ 3, then x2 − 3 ≥ 0
Then x2 − 3x + 2 ≥ 0, Thus

∣∣∣2x3 + x2 − 3x + 2
∣∣∣ = 2x3 + x2 − 3x + 2

≥ 2x3

Choosing c = 2 and k = 3∣∣2x3 + x2 − 3x + 2
∣∣ ≥ 2

∣∣x3
∣∣ for x ≥ 3

Therefore,
2x3 + x2 − 3x + 2 ∈ Ω(x3)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 53 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that 2x3 + x2 − 3x + 2 is Ω(x3) using definition of
Big − Ω

Sol:
Let, x ≥ 3, then x2 − 3 ≥ 0
Then x2 − 3x + 2 ≥ 0, Thus

∣∣∣2x3 + x2 − 3x + 2
∣∣∣ = 2x3 + x2 − 3x + 2

≥ 2x3

Choosing c = 2 and k = 3∣∣2x3 + x2 − 3x + 2
∣∣ ≥ 2

∣∣x3
∣∣ for x ≥ 3

Therefore,
2x3 + x2 − 3x + 2 ∈ Ω(x3)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 53 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that 2x3 + x2 − 3x + 2 is Ω(x3) using definition of
Big − Ω

Sol:
Let, x ≥ 3, then x2 − 3 ≥ 0
Then x2 − 3x + 2 ≥ 0, Thus

∣∣∣2x3 + x2 − 3x + 2
∣∣∣ = 2x3 + x2 − 3x + 2

≥ 2x3

Choosing c = 2 and k = 3∣∣2x3 + x2 − 3x + 2
∣∣ ≥ 2

∣∣x3
∣∣ for x ≥ 3

Therefore,
2x3 + x2 − 3x + 2 ∈ Ω(x3)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 53 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that 2x3 + x2 − 3x + 2 is Ω(x3) using definition of
Big − Ω

Sol:
Let, x ≥ 3, then x2 − 3 ≥ 0
Then x2 − 3x + 2 ≥ 0, Thus

∣∣∣2x3 + x2 − 3x + 2
∣∣∣ = 2x3 + x2 − 3x + 2

≥ 2x3

Choosing c = 2 and k = 3∣∣2x3 + x2 − 3x + 2
∣∣ ≥ 2

∣∣x3
∣∣ for x ≥ 3

Therefore,
2x3 + x2 − 3x + 2 ∈ Ω(x3)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 53 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that 2x3 + x2 − 3x + 2 is Ω(x3) using definition of
Big − Ω

Sol:
Let, x ≥ 3, then x2 − 3 ≥ 0
Then x2 − 3x + 2 ≥ 0, Thus

∣∣∣2x3 + x2 − 3x + 2
∣∣∣ = 2x3 + x2 − 3x + 2

≥ 2x3

Choosing c = 2 and k = 3∣∣2x3 + x2 − 3x + 2
∣∣ ≥ 2

∣∣x3
∣∣ for x ≥ 3

Therefore,
2x3 + x2 − 3x + 2 ∈ Ω(x3)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 53 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that 2x3 + x2 − 3x + 2 is Ω(x3) using definition of
Big − Ω

Sol:
Let, x ≥ 3, then x2 − 3 ≥ 0
Then x2 − 3x + 2 ≥ 0, Thus

∣∣∣2x3 + x2 − 3x + 2
∣∣∣ = 2x3 + x2 − 3x + 2

≥ 2x3

Choosing c = 2 and k = 3∣∣2x3 + x2 − 3x + 2
∣∣ ≥ 2

∣∣x3
∣∣ for x ≥ 3

Therefore,
2x3 + x2 − 3x + 2 ∈ Ω(x3)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 53 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that 2x3 + x2 − 3x + 2 is Ω(x3) using definition of
Big − Ω

Sol:
Let, x ≥ 3, then x2 − 3 ≥ 0
Then x2 − 3x + 2 ≥ 0, Thus

∣∣∣2x3 + x2 − 3x + 2
∣∣∣ = 2x3 + x2 − 3x + 2

≥ 2x3

Choosing c = 2 and k = 3∣∣2x3 + x2 − 3x + 2
∣∣ ≥ 2

∣∣x3
∣∣ for x ≥ 3

Therefore,
2x3 + x2 − 3x + 2 ∈ Ω(x3)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 53 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that 2x3 + x2 − 3x + 2 is Ω(x3) using definition of
Big − Ω

Sol:
Let, x ≥ 3, then x2 − 3 ≥ 0
Then x2 − 3x + 2 ≥ 0, Thus

∣∣∣2x3 + x2 − 3x + 2
∣∣∣ = 2x3 + x2 − 3x + 2

≥ 2x3

Choosing c = 2 and k = 3∣∣2x3 + x2 − 3x + 2
∣∣ ≥ 2

∣∣x3
∣∣ for x ≥ 3

Therefore,
2x3 + x2 − 3x + 2 ∈ Ω(x3)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 53 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 02 Show that 2x3 + x2 − 3x + 2 is Ω(x3) using definition of
Big − Ω

Sol:
Let, x ≥ 3, then x2 − 3 ≥ 0
Then x2 − 3x + 2 ≥ 0, Thus

∣∣∣2x3 + x2 − 3x + 2
∣∣∣ = 2x3 + x2 − 3x + 2

≥ 2x3

Choosing c = 2 and k = 3∣∣2x3 + x2 − 3x + 2
∣∣ ≥ 2

∣∣x3
∣∣ for x ≥ 3

Therefore,
2x3 + x2 − 3x + 2 ∈ Ω(x3)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 53 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Big-Theta

Definition
f is big −Θ of g, written f ∈ Θ(g), if f both O(g) and Ω(g).

The definition given for Big −Θ is equivalent to the following.

Theorem
f is Θ(g) if and only if f is O(g) and g is O(f)

Proof :
”⇐ ”

Since f ∈ O(g), want to show that f ∈ Ω(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 54 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Big-Theta

Definition
f is big −Θ of g, written f ∈ Θ(g), if f both O(g) and Ω(g).

The definition given for Big −Θ is equivalent to the following.

Theorem
f is Θ(g) if and only if f is O(g) and g is O(f)

Proof :
”⇐ ”

Since f ∈ O(g), want to show that f ∈ Ω(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 54 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Big-Theta

Definition
f is big −Θ of g, written f ∈ Θ(g), if f both O(g) and Ω(g).

The definition given for Big −Θ is equivalent to the following.

Theorem
f is Θ(g) if and only if f is O(g) and g is O(f)

Proof :
”⇐ ”

Since f ∈ O(g), want to show that f ∈ Ω(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 54 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Big-Theta

Definition
f is big −Θ of g, written f ∈ Θ(g), if f both O(g) and Ω(g).

The definition given for Big −Θ is equivalent to the following.

Theorem
f is Θ(g) if and only if f is O(g) and g is O(f)

Proof :
”⇐ ”

Since f ∈ O(g), want to show that f ∈ Ω(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 54 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Big-Theta

Definition
f is big −Θ of g, written f ∈ Θ(g), if f both O(g) and Ω(g).

The definition given for Big −Θ is equivalent to the following.

Theorem
f is Θ(g) if and only if f is O(g) and g is O(f)

Proof :
”⇐ ”

Since f ∈ O(g), want to show that f ∈ Ω(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 54 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Since g ∈ O(f)

g(x) ≤ cf (x) for x > k

f (x) ≥ 1
c

g(x) where c′ =
1
c

= c′g(x)

Therefore f ∈ Ω(g)

”⇒ ”

f ∈ Θ(g) ⇒ f ∈ O(g) and f ∈ Ω(g)
Since f ∈ Ω(g)

f (x) ≥ cg(x) for x > k

g(x) ≤ 1
c

f (x)

Therefore g ∈ O(f)
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 55 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Since g ∈ O(f)

g(x) ≤ cf (x) for x > k

f (x) ≥ 1
c

g(x) where c′ =
1
c

= c′g(x)

Therefore f ∈ Ω(g)

”⇒ ”

f ∈ Θ(g) ⇒ f ∈ O(g) and f ∈ Ω(g)
Since f ∈ Ω(g)

f (x) ≥ cg(x) for x > k

g(x) ≤ 1
c

f (x)

Therefore g ∈ O(f)
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 55 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Since g ∈ O(f)

g(x) ≤ cf (x) for x > k

f (x) ≥ 1
c

g(x) where c′ =
1
c

= c′g(x)

Therefore f ∈ Ω(g)

”⇒ ”

f ∈ Θ(g) ⇒ f ∈ O(g) and f ∈ Ω(g)
Since f ∈ Ω(g)

f (x) ≥ cg(x) for x > k

g(x) ≤ 1
c

f (x)

Therefore g ∈ O(f)
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 55 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Since g ∈ O(f)

g(x) ≤ cf (x) for x > k

f (x) ≥ 1
c

g(x) where c′ =
1
c

= c′g(x)

Therefore f ∈ Ω(g)

”⇒ ”

f ∈ Θ(g) ⇒ f ∈ O(g) and f ∈ Ω(g)
Since f ∈ Ω(g)

f (x) ≥ cg(x) for x > k

g(x) ≤ 1
c

f (x)

Therefore g ∈ O(f)
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 55 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Since g ∈ O(f)

g(x) ≤ cf (x) for x > k

f (x) ≥ 1
c

g(x) where c′ =
1
c

= c′g(x)

Therefore f ∈ Ω(g)

”⇒ ”

f ∈ Θ(g) ⇒ f ∈ O(g) and f ∈ Ω(g)
Since f ∈ Ω(g)

f (x) ≥ cg(x) for x > k

g(x) ≤ 1
c

f (x)

Therefore g ∈ O(f)
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 55 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Since g ∈ O(f)

g(x) ≤ cf (x) for x > k

f (x) ≥ 1
c

g(x) where c′ =
1
c

= c′g(x)

Therefore f ∈ Ω(g)

”⇒ ”

f ∈ Θ(g) ⇒ f ∈ O(g) and f ∈ Ω(g)
Since f ∈ Ω(g)

f (x) ≥ cg(x) for x > k

g(x) ≤ 1
c

f (x)

Therefore g ∈ O(f)
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 55 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Since g ∈ O(f)

g(x) ≤ cf (x) for x > k

f (x) ≥ 1
c

g(x) where c′ =
1
c

= c′g(x)

Therefore f ∈ Ω(g)

”⇒ ”

f ∈ Θ(g) ⇒ f ∈ O(g) and f ∈ Ω(g)
Since f ∈ Ω(g)

f (x) ≥ cg(x) for x > k

g(x) ≤ 1
c

f (x)

Therefore g ∈ O(f)
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 55 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Since g ∈ O(f)

g(x) ≤ cf (x) for x > k

f (x) ≥ 1
c

g(x) where c′ =
1
c

= c′g(x)

Therefore f ∈ Ω(g)

”⇒ ”

f ∈ Θ(g) ⇒ f ∈ O(g) and f ∈ Ω(g)
Since f ∈ Ω(g)

f (x) ≥ cg(x) for x > k

g(x) ≤ 1
c

f (x)

Therefore g ∈ O(f)
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 55 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Since g ∈ O(f)

g(x) ≤ cf (x) for x > k

f (x) ≥ 1
c

g(x) where c′ =
1
c

= c′g(x)

Therefore f ∈ Ω(g)

”⇒ ”

f ∈ Θ(g) ⇒ f ∈ O(g) and f ∈ Ω(g)
Since f ∈ Ω(g)

f (x) ≥ cg(x) for x > k

g(x) ≤ 1
c

f (x)

Therefore g ∈ O(f)
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 55 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Since g ∈ O(f)

g(x) ≤ cf (x) for x > k

f (x) ≥ 1
c

g(x) where c′ =
1
c

= c′g(x)

Therefore f ∈ Ω(g)

”⇒ ”

f ∈ Θ(g) ⇒ f ∈ O(g) and f ∈ Ω(g)
Since f ∈ Ω(g)

f (x) ≥ cg(x) for x > k

g(x) ≤ 1
c

f (x)

Therefore g ∈ O(f)
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 55 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Since g ∈ O(f)

g(x) ≤ cf (x) for x > k

f (x) ≥ 1
c

g(x) where c′ =
1
c

= c′g(x)

Therefore f ∈ Ω(g)

”⇒ ”

f ∈ Θ(g) ⇒ f ∈ O(g) and f ∈ Ω(g)
Since f ∈ Ω(g)

f (x) ≥ cg(x) for x > k

g(x) ≤ 1
c

f (x)

Therefore g ∈ O(f)
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 55 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that 2x2−3
3x4+x3−2x2−1 is Θ(x−2)

Sol: Take f (x) = 2x2−3
3x4+x3−2x2−1 and g(x) = x−2

Let,

lim
x→∞

f (x)

g(x)
= lim

x→∞

(2x2 − 3)x2

3x4 + x3 − 2x2 − 1

= lim
x→∞

2− 3
x2

3 + 1
x −

2
x2 − 1

x4

=
2
3

Therefore f ∈ O(g)

By taking limx→∞
g(x)
f (x) = 3

2 , Therefore g ∈ O(f)

Hence f ∈ Θ(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 56 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that 2x2−3
3x4+x3−2x2−1 is Θ(x−2)

Sol: Take f (x) = 2x2−3
3x4+x3−2x2−1 and g(x) = x−2

Let,

lim
x→∞

f (x)

g(x)
= lim

x→∞

(2x2 − 3)x2

3x4 + x3 − 2x2 − 1

= lim
x→∞

2− 3
x2

3 + 1
x −

2
x2 − 1

x4

=
2
3

Therefore f ∈ O(g)

By taking limx→∞
g(x)
f (x) = 3

2 , Therefore g ∈ O(f)

Hence f ∈ Θ(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 56 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that 2x2−3
3x4+x3−2x2−1 is Θ(x−2)

Sol: Take f (x) = 2x2−3
3x4+x3−2x2−1 and g(x) = x−2

Let,

lim
x→∞

f (x)

g(x)
= lim

x→∞

(2x2 − 3)x2

3x4 + x3 − 2x2 − 1

= lim
x→∞

2− 3
x2

3 + 1
x −

2
x2 − 1

x4

=
2
3

Therefore f ∈ O(g)

By taking limx→∞
g(x)
f (x) = 3

2 , Therefore g ∈ O(f)

Hence f ∈ Θ(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 56 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that 2x2−3
3x4+x3−2x2−1 is Θ(x−2)

Sol: Take f (x) = 2x2−3
3x4+x3−2x2−1 and g(x) = x−2

Let,

lim
x→∞

f (x)

g(x)
= lim

x→∞

(2x2 − 3)x2

3x4 + x3 − 2x2 − 1

= lim
x→∞

2− 3
x2

3 + 1
x −

2
x2 − 1

x4

=
2
3

Therefore f ∈ O(g)

By taking limx→∞
g(x)
f (x) = 3

2 , Therefore g ∈ O(f)

Hence f ∈ Θ(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 56 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that 2x2−3
3x4+x3−2x2−1 is Θ(x−2)

Sol: Take f (x) = 2x2−3
3x4+x3−2x2−1 and g(x) = x−2

Let,

lim
x→∞

f (x)

g(x)
= lim

x→∞

(2x2 − 3)x2

3x4 + x3 − 2x2 − 1

= lim
x→∞

2− 3
x2

3 + 1
x −

2
x2 − 1

x4

=
2
3

Therefore f ∈ O(g)

By taking limx→∞
g(x)
f (x) = 3

2 , Therefore g ∈ O(f)

Hence f ∈ Θ(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 56 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that 2x2−3
3x4+x3−2x2−1 is Θ(x−2)

Sol: Take f (x) = 2x2−3
3x4+x3−2x2−1 and g(x) = x−2

Let,

lim
x→∞

f (x)

g(x)
= lim

x→∞

(2x2 − 3)x2

3x4 + x3 − 2x2 − 1

= lim
x→∞

2− 3
x2

3 + 1
x −

2
x2 − 1

x4

=
2
3

Therefore f ∈ O(g)

By taking limx→∞
g(x)
f (x) = 3

2 , Therefore g ∈ O(f)

Hence f ∈ Θ(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 56 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that 2x2−3
3x4+x3−2x2−1 is Θ(x−2)

Sol: Take f (x) = 2x2−3
3x4+x3−2x2−1 and g(x) = x−2

Let,

lim
x→∞

f (x)

g(x)
= lim

x→∞

(2x2 − 3)x2

3x4 + x3 − 2x2 − 1

= lim
x→∞

2− 3
x2

3 + 1
x −

2
x2 − 1

x4

=
2
3

Therefore f ∈ O(g)

By taking limx→∞
g(x)
f (x) = 3

2 , Therefore g ∈ O(f)

Hence f ∈ Θ(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 56 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that 2x2−3
3x4+x3−2x2−1 is Θ(x−2)

Sol: Take f (x) = 2x2−3
3x4+x3−2x2−1 and g(x) = x−2

Let,

lim
x→∞

f (x)

g(x)
= lim

x→∞

(2x2 − 3)x2

3x4 + x3 − 2x2 − 1

= lim
x→∞

2− 3
x2

3 + 1
x −

2
x2 − 1

x4

=
2
3

Therefore f ∈ O(g)

By taking limx→∞
g(x)
f (x) = 3

2 , Therefore g ∈ O(f)

Hence f ∈ Θ(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 56 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

E.g. 01 Show that 2x2−3
3x4+x3−2x2−1 is Θ(x−2)

Sol: Take f (x) = 2x2−3
3x4+x3−2x2−1 and g(x) = x−2

Let,

lim
x→∞

f (x)

g(x)
= lim

x→∞

(2x2 − 3)x2

3x4 + x3 − 2x2 − 1

= lim
x→∞

2− 3
x2

3 + 1
x −

2
x2 − 1

x4

=
2
3

Therefore f ∈ O(g)

By taking limx→∞
g(x)
f (x) = 3

2 , Therefore g ∈ O(f)

Hence f ∈ Θ(g)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 56 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Exercise
If a and b are positive real numbers different from 1, show that
logax ∈ Θ(logbx)

Thus logarithmic functions have the same growth rate, hence it doesn’t
matter what(acceptable) base is used.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 57 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Exercise
If a and b are positive real numbers different from 1, show that
logax ∈ Θ(logbx)

Thus logarithmic functions have the same growth rate, hence it doesn’t
matter what(acceptable) base is used.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 57 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Determine whether following statements are true or false

3x5 − 16x + 2 ∈ O(x5) ?
3x5 − 16x + 2 ∈ O(x) ?
3x5 − 16x + 2 ∈ O(x17) ?
3x5 − 16x + 2 ∈ Ω(x5) ?
3x5 − 16x + 2 ∈ Ω(x) ?
3x5 − 16x + 2 ∈ Ω(x17) ?
3x5 − 16x + 2 ∈ Θ(x5) ?
3x5 − 16x + 2 ∈ Θ(x) ?
3x5 − 16x + 2 ∈ Θ(x17) ?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 58 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Determine whether following statements are true or false

3x5 − 16x + 2 ∈ O(x5) ?
3x5 − 16x + 2 ∈ O(x) ?
3x5 − 16x + 2 ∈ O(x17) ?
3x5 − 16x + 2 ∈ Ω(x5) ?
3x5 − 16x + 2 ∈ Ω(x) ?
3x5 − 16x + 2 ∈ Ω(x17) ?
3x5 − 16x + 2 ∈ Θ(x5) ?
3x5 − 16x + 2 ∈ Θ(x) ?
3x5 − 16x + 2 ∈ Θ(x17) ?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 58 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Determine whether following statements are true or false

3x5 − 16x + 2 ∈ O(x5) ?
3x5 − 16x + 2 ∈ O(x) ?
3x5 − 16x + 2 ∈ O(x17) ?
3x5 − 16x + 2 ∈ Ω(x5) ?
3x5 − 16x + 2 ∈ Ω(x) ?
3x5 − 16x + 2 ∈ Ω(x17) ?
3x5 − 16x + 2 ∈ Θ(x5) ?
3x5 − 16x + 2 ∈ Θ(x) ?
3x5 − 16x + 2 ∈ Θ(x17) ?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 58 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Determine whether following statements are true or false

3x5 − 16x + 2 ∈ O(x5) ?
3x5 − 16x + 2 ∈ O(x) ?
3x5 − 16x + 2 ∈ O(x17) ?
3x5 − 16x + 2 ∈ Ω(x5) ?
3x5 − 16x + 2 ∈ Ω(x) ?
3x5 − 16x + 2 ∈ Ω(x17) ?
3x5 − 16x + 2 ∈ Θ(x5) ?
3x5 − 16x + 2 ∈ Θ(x) ?
3x5 − 16x + 2 ∈ Θ(x17) ?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 58 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Determine whether following statements are true or false

3x5 − 16x + 2 ∈ O(x5) ?
3x5 − 16x + 2 ∈ O(x) ?
3x5 − 16x + 2 ∈ O(x17) ?
3x5 − 16x + 2 ∈ Ω(x5) ?
3x5 − 16x + 2 ∈ Ω(x) ?
3x5 − 16x + 2 ∈ Ω(x17) ?
3x5 − 16x + 2 ∈ Θ(x5) ?
3x5 − 16x + 2 ∈ Θ(x) ?
3x5 − 16x + 2 ∈ Θ(x17) ?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 58 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Determine whether following statements are true or false

3x5 − 16x + 2 ∈ O(x5) ?
3x5 − 16x + 2 ∈ O(x) ?
3x5 − 16x + 2 ∈ O(x17) ?
3x5 − 16x + 2 ∈ Ω(x5) ?
3x5 − 16x + 2 ∈ Ω(x) ?
3x5 − 16x + 2 ∈ Ω(x17) ?
3x5 − 16x + 2 ∈ Θ(x5) ?
3x5 − 16x + 2 ∈ Θ(x) ?
3x5 − 16x + 2 ∈ Θ(x17) ?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 58 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Determine whether following statements are true or false

3x5 − 16x + 2 ∈ O(x5) ?
3x5 − 16x + 2 ∈ O(x) ?
3x5 − 16x + 2 ∈ O(x17) ?
3x5 − 16x + 2 ∈ Ω(x5) ?
3x5 − 16x + 2 ∈ Ω(x) ?
3x5 − 16x + 2 ∈ Ω(x17) ?
3x5 − 16x + 2 ∈ Θ(x5) ?
3x5 − 16x + 2 ∈ Θ(x) ?
3x5 − 16x + 2 ∈ Θ(x17) ?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 58 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Determine whether following statements are true or false

3x5 − 16x + 2 ∈ O(x5) ?
3x5 − 16x + 2 ∈ O(x) ?
3x5 − 16x + 2 ∈ O(x17) ?
3x5 − 16x + 2 ∈ Ω(x5) ?
3x5 − 16x + 2 ∈ Ω(x) ?
3x5 − 16x + 2 ∈ Ω(x17) ?
3x5 − 16x + 2 ∈ Θ(x5) ?
3x5 − 16x + 2 ∈ Θ(x) ?
3x5 − 16x + 2 ∈ Θ(x17) ?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 58 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Determine whether following statements are true or false

3x5 − 16x + 2 ∈ O(x5) ?
3x5 − 16x + 2 ∈ O(x) ?
3x5 − 16x + 2 ∈ O(x17) ?
3x5 − 16x + 2 ∈ Ω(x5) ?
3x5 − 16x + 2 ∈ Ω(x) ?
3x5 − 16x + 2 ∈ Ω(x17) ?
3x5 − 16x + 2 ∈ Θ(x5) ?
3x5 − 16x + 2 ∈ Θ(x) ?
3x5 − 16x + 2 ∈ Θ(x17) ?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 58 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Determine whether following statements are true or false

3x5 − 16x + 2 ∈ O(x5) ?
3x5 − 16x + 2 ∈ O(x) ?
3x5 − 16x + 2 ∈ O(x17) ?
3x5 − 16x + 2 ∈ Ω(x5) ?
3x5 − 16x + 2 ∈ Ω(x) ?
3x5 − 16x + 2 ∈ Ω(x17) ?
3x5 − 16x + 2 ∈ Θ(x5) ?
3x5 − 16x + 2 ∈ Θ(x) ?
3x5 − 16x + 2 ∈ Θ(x17) ?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 58 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Summary

Suppose f and g are functions such that

lim
x→∞

∣∣∣∣ f (x)

g(x)

∣∣∣∣ = L, where 0 ≤ L ≤ ∞

1 If L = 0, f is o(g) [hence O(g)), and g is Ω(f) (hence, not O(f)].
2 If L =∞, then f is Ω(g) [hence, not O(g) and g is o(f) (hence,

O(f))].
3 If 0 < L <∞, then f is Θ(g) (hence, O(g)), and g is Θ(f)(hence,

O(f)).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 59 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Summary

Suppose f and g are functions such that

lim
x→∞

∣∣∣∣ f (x)

g(x)

∣∣∣∣ = L, where 0 ≤ L ≤ ∞

1 If L = 0, f is o(g) [hence O(g)), and g is Ω(f) (hence, not O(f)].
2 If L =∞, then f is Ω(g) [hence, not O(g) and g is o(f) (hence,

O(f))].
3 If 0 < L <∞, then f is Θ(g) (hence, O(g)), and g is Θ(f)(hence,

O(f)).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 59 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Summary

Suppose f and g are functions such that

lim
x→∞

∣∣∣∣ f (x)

g(x)

∣∣∣∣ = L, where 0 ≤ L ≤ ∞

1 If L = 0, f is o(g) [hence O(g)), and g is Ω(f) (hence, not O(f)].
2 If L =∞, then f is Ω(g) [hence, not O(g) and g is o(f) (hence,

O(f))].
3 If 0 < L <∞, then f is Θ(g) (hence, O(g)), and g is Θ(f)(hence,

O(f)).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 59 / 194

Analysis of Algorithms Big O, Little o, Ω (Omega), and Θ (Theta) Notations

Summary

Suppose f and g are functions such that

lim
x→∞

∣∣∣∣ f (x)

g(x)

∣∣∣∣ = L, where 0 ≤ L ≤ ∞

1 If L = 0, f is o(g) [hence O(g)), and g is Ω(f) (hence, not O(f)].
2 If L =∞, then f is Ω(g) [hence, not O(g) and g is o(f) (hence,

O(f))].
3 If 0 < L <∞, then f is Θ(g) (hence, O(g)), and g is Θ(f)(hence,

O(f)).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 59 / 194

Analysis of Algorithms Complexity classes

What is a Complexity Class

A complexity class contains a set of problems that take a similar
range of space and time to solve.

For example ”all problems solvable in polynomial time with respect
to input size,” ”all problems solvable with exponential space with
respect to input size,” and so on.

Problems are usually proven to be in a particular complexity class
by running the problem on an abstract computational model,
usually a Turing machine(a mathematical model of a hypothetical
computing machine which can use a predefined set of rules to
determine a result from a set of input variables.).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 60 / 194

Analysis of Algorithms Complexity classes

What is a Complexity Class: cont...

Complexity classes help computer scientists to group problems
based on how much time and space they require to solve
problems and verify solutions.

For example, complexity can help describe how many steps it
would take a Turing machine to decide a problem A?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 61 / 194

Analysis of Algorithms Complexity classes

The time complexity of an algorithm is usually used when
describing the number of steps it needs to take to solve a
problem, but it can also be used to describe how long it takes to
verify an answer.

The space complexity of an algorithm describes how much
memory the algorithm needs in order to operate. In terms of
Turing machines, the space needed to solve a problem relates to
the amount of memory on the Turing machines tape it needs to do
the problem.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 62 / 194

Analysis of Algorithms Complexity classes

Common complexity classes

ALL is the class of all decision problems. Many important
complexity classes can be defined by bounding the time or space
used by the algorithm.
Some important complexity classes of decision problems defined
in this manner are the following:

1 Time-complexity classes (execution time)
2 Space-complexity classes (amount of memory required)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 63 / 194

Analysis of Algorithms Complexity classes

Time-complexity classes

Space-complexity classes

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 64 / 194

Analysis of Algorithms Complexity classes

Which measure is more important?

Answer often depends on the limitations of the technology available at
time of analysis.

For most of the algorithms associated with this course, time complexity
comparisons are more interesting than space complexity comparisons

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 65 / 194

Analysis of Algorithms Complexity classes

Time Complexity

Factors that should notaffect time complexity analysis:
The programming language chosen to implement the algorithm

The quality of the compiler

The speed of the computer on which the algorithm is to be executed

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 66 / 194

Analysis of Algorithms Complexity classes

Time Complexity: cont...

Time complexity analysis for an algorithm is independent of
programming language, machine used.

Objectivesof time complexity analysis:
To determine the feasibility of an algorithm by estimating an upper
boundon the amount of work performed

To compare different algorithms before deciding on which one to
implement

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 67 / 194

Analysis of Algorithms Complexity classes

Standard Complexity Classes

Tractable vs Intractable Problems:

We can distinguish problems between two distinct classes.
Problems which can be solved by a polynomial time algorithm and
problems for which no polynomial time algorithm is known.
An algorithm for a given problem is said to be a polynomial time
algorithm if its worst case time complexity is O(nk), where k is a
fixed integer and n is size of a problem.

For example:

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 68 / 194

Analysis of Algorithms Complexity classes

Standard Complexity Classes: cont...

For example:
Sequential search: O(n)

Binary search: O(logn)

Insertion sort: O(n2)

Product of two matrices: O(n3)

Qiuck sort: O(nlogn)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 69 / 194

Analysis of Algorithms Complexity classes

The set of all problems that can be solved in polynomial amount of
time are called ”Tractable Problems”. These problems can be
solved in a reasonable amount of time for even very large amount
of input data. Their worst case time complexity is O(nk).

The set of all problems that cannot be solved in polynomial
amount of time are called ”Intractable Problems”. Their worst
case time complexity is O(kn). These problems require huge
amount of time for even modest input sizes.

For example:

0-1 Knapsack Problem: O(2n)
Traveling Salesperson Problem: O(n22n)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 70 / 194

Analysis of Algorithms Complexity classes

Deterministic vs Non-deterministic Algorithms:

Deterministic Machines: Conventional Digital machines are
deterministic in nature. Serialization of resource access or
sequential execution is the basic concept used in these machines
(Von Neumann Architecture).

Non-deterministic Machines: These are hypothetical machines
which can do the jobs in paralel fashion i.e. more than one job can
be done in one unit of time.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 71 / 194

Analysis of Algorithms Complexity classes

Deterministic Algorithms: Algorithms in which the result of any
operation is uniquely defined are termed as Deterministic
Algorithms. All algorithms studied so far are deterministic
algorithms. Such algorithms agree with the way programs are
executed on a digital computer i.e. a deterministic machine.

Non-deterministic Algorithms: If we remove the restriction on
the outcome of every operation, then outcomes are not uniquely
defined but they are limited to specified set of possibilities. There
is a termination condition in such algorithms. Such algorithms are
called as non-deterministic algorithms.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 72 / 194

Analysis of Algorithms Complexity classes

Decision Problem and Optimization Problem Algorithm:

Decision Problem: Any problem for which answer is either 0 or 1
is called a decision problem and the corresponding algorithm is
referred as a decision algorithm. For example: To search a given
number

Optimization Problem: Any problem that involves the
identification of an optimal (either min. or max.) value of a given
cost function is known as an optimization problem and the
corresponding algorithm is referred as an optimization algorithm.
For example: Knapsack problem, Minimum cost spanning tree

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 73 / 194

Analysis of Algorithms Complexity classes

P vs NP class problems:

P class: The class of decision problems that can be solved in
polynomial time using deterministic algorithms is called the P
class or Polynomial problems.

NP class: The class of decision problems that can be solved in
polynomial time using non-deterministic algorithms is called NP
class or Non-deterministic Polynomial problems.
Any P class problem can be solved using NP class algorithm.
Therefore P is contained in NP class.
Whether Np is contained in NP is unknown.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 74 / 194

Analysis of Algorithms Complexity classes

NP-Complete problems:

A decision problem D is said to be NP-Complete if
1 It belongs to NP class
2 Every problem in NP class is polynomially reducible to D

If one instance of such problem can be solved using a polynomial
algorithm, the complete class of problems can be solved using a
polynomial algorithm.

Examples:

Traveling Salesperson Problem: optimal tour
Printed circuit board problem
Bin packing problem
0-1 Knapsack problem
Vertex (node) cover problem

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 75 / 194

Analysis of Algorithms Complexity classes

NP-Hard problems:

A problem L is said to be NP Hard problem if and only if
satisfiability ∝ L.
NP-Hard problems are basically the optimization versions of the
problems in NP complete class.
NP-Hard problems are not mere yes/ no problems. They are
p[roblems wherein we need to find the optimal solution.
A problem L is NP complete if and only if L is NP-Hard and
L ∈ NP.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 76 / 194

Analysis of Algorithms Complexity classes

Commonly believed relationship among P, NP, NP-Complete and
NP-Hard

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 77 / 194

Analysis of Algorithms Complexity classes

An example of NP-Hard problem not in NP-Complete

Halting Problem: To determine for an arbitrary deterministic
algorithm A and an input I whether algorithm A with input I ever
terminates or enters an infinite loop. This problem is undecidable.
No algorithms exists to solve this problem.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 78 / 194

Time Complexity of Searching and Shorting Algorithms

Outline
1 Mathematics for the Analysis of Algorithms

Binomial Identities
Recurrence Relations
Asymptotic Analysis

2 Introduction to Algorithm Design, Validation and Analysis
3 Analysis of Algorithms

Best, Average, and Worst Case Running Times
Big O, Little o, Ω (Omega), and Θ (Theta) Notations
Complexity classes

4 Time Complexity of Searching and Shorting Algorithms
Sequential and Binary Search Algorithms
Sorting Algorithms
Breadth First and Depth First Search Algorithms

5 Algorithm Design Strategies
Divide and Conquer Techniques
Dynamic Programming
Greedy AlgorithmsDr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 79 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Sequential Search/Linear Search

How Sequential Search works?

Linear search or sequential search is a method for finding a target
value within a list. It sequentially checks each element of the list for the
target value until a match is found or until all the elements have been
searched.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 80 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 81 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 82 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 83 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 84 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 85 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 86 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 87 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Binary Search

How Binary Search works?

Binary search compares the target value to the middle element of the
array; if they are unequal, half in which the target cannot lie is
eliminated and the search continues on the remaining half until it is
successful or the remaining half is empty.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 88 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 89 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 90 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 91 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 92 / 194

Time Complexity of Searching and Shorting Algorithms Sequential and Binary Search Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 93 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Sorting Algorithms

Sorting Algorithm is an algorithm made up of a series of
instructions that takes an array as input, and outputs a sorted
array.

There are many sorting algorithms, such as:

Selection Sort, Bubble Sort, Insertion Sort, Merge Sort, heap Sort,

Quick sort, Radix Sort, Counting Sort, Bucket Sort, Shell Sort,

Comb Sort, Pigeonhole Sort, Cycle Sort.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 94 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by
repeatedly swapping the adjacent elements if they are in wrong
order.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 95 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Algorithm:

Step 1: Compare each pair of adjacent elements in the list

Step 2: Swap two element if necessary

Step 3: Repeat this process for all the elements until the entire
array is sorted.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 96 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 97 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 98 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 99 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 100 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 101 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 102 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 103 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 104 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 105 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 106 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 107 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 108 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 109 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 110 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 111 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Selection Sort

The selection sort algorithm sorts an array by repeatedly finding
the minimum element (considering ascending order) from
unsorted part and putting it at the beginning.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 112 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Algorithm:

Step 1: Find the minimum value in the list

Step 2: Swap it with the value in the current position

Step 3: Repeat this process for all the elements until the entire
array is sorted.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 113 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 114 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 115 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 116 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 117 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 118 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 119 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 120 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 121 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 122 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 123 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 124 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 125 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 126 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 127 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 128 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 129 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 130 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 131 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 132 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 133 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 134 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 135 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 136 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 137 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 138 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 139 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 140 / 194

Time Complexity of Searching and Shorting Algorithms Sorting Algorithms

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 141 / 194

Time Complexity of Searching and Shorting Algorithms Breadth First and Depth First Search Algorithms

Spanning trees

There are two different efficient algorithms for finding spanning trees.
1 Depth first search Algorithm (DFS)

2 Breadth first search Algorithm (BFS)

Depth first search Algorithm (DFS)

Depth first search is a recursive algorithm for visiting all the vertices of
a connected graph G.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 142 / 194

Time Complexity of Searching and Shorting Algorithms Breadth First and Depth First Search Algorithms

Depth first search Algorithm (DFS)

Example:

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 143 / 194

Time Complexity of Searching and Shorting Algorithms Breadth First and Depth First Search Algorithms

Step 1:

Start at vertex 1.

Step 2:

Look at 1’s first neighbor nearly vertex 2 has not get been visited we
visit it.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 144 / 194

Time Complexity of Searching and Shorting Algorithms Breadth First and Depth First Search Algorithms

Step 3:

Step 4:

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 145 / 194

Time Complexity of Searching and Shorting Algorithms Breadth First and Depth First Search Algorithms

Step 5:

Step 6:

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 146 / 194

Time Complexity of Searching and Shorting Algorithms Breadth First and Depth First Search Algorithms

Step 7:

Spanning tree of G.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 147 / 194

Time Complexity of Searching and Shorting Algorithms Breadth First and Depth First Search Algorithms

Breadth first search Algorithm (BFS)

Breadth first search Algorithm (BFS)

In breadth first search, when are first encounter a vertex, we do not
proceed to search further from that vertex immediately. Example:

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 148 / 194

Time Complexity of Searching and Shorting Algorithms Breadth First and Depth First Search Algorithms

Step 1:

Step 2:

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 149 / 194

Time Complexity of Searching and Shorting Algorithms Breadth First and Depth First Search Algorithms

Step 3:

Step 4:

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 150 / 194

Time Complexity of Searching and Shorting Algorithms Breadth First and Depth First Search Algorithms

Step 5:

Step 6:

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 151 / 194

Time Complexity of Searching and Shorting Algorithms Breadth First and Depth First Search Algorithms

Step 7:

Spanning tree of G.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 152 / 194

Algorithm Design Strategies

Outline
1 Mathematics for the Analysis of Algorithms

Binomial Identities
Recurrence Relations
Asymptotic Analysis

2 Introduction to Algorithm Design, Validation and Analysis
3 Analysis of Algorithms

Best, Average, and Worst Case Running Times
Big O, Little o, Ω (Omega), and Θ (Theta) Notations
Complexity classes

4 Time Complexity of Searching and Shorting Algorithms
Sequential and Binary Search Algorithms
Sorting Algorithms
Breadth First and Depth First Search Algorithms

5 Algorithm Design Strategies
Divide and Conquer Techniques
Dynamic Programming
Greedy AlgorithmsDr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 153 / 194

Algorithm Design Strategies Divide and Conquer Techniques

What is Divide and Conquer?

Divide it into smaller problems

Solve the smaller problems

Combine their solutions into a solution for the big problem

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 154 / 194

Algorithm Design Strategies Divide and Conquer Techniques

What is Divide and Conquer?

Divide it into smaller problems

Solve the smaller problems

Combine their solutions into a solution for the big problem

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 154 / 194

Algorithm Design Strategies Divide and Conquer Techniques

What is Divide and Conquer?

Divide it into smaller problems

Solve the smaller problems

Combine their solutions into a solution for the big problem

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 154 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Example : Merge sorting

Divide the numbers into halves

Sort each half separately

Merge the two sorted halves

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 155 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Example : Merge sorting

Divide the numbers into halves

Sort each half separately

Merge the two sorted halves

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 155 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Example : Merge sorting

Divide the numbers into halves

Sort each half separately

Merge the two sorted halves

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 155 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Applications

Finding the maximum and minimum of a sequence of numbers

Integer multiplication

Matrix multiplication

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 156 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Applications

Finding the maximum and minimum of a sequence of numbers

Integer multiplication

Matrix multiplication

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 156 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Applications

Finding the maximum and minimum of a sequence of numbers

Integer multiplication

Matrix multiplication

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 156 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: In general

Find the maximum and minimum elements in an array S[1...n]. How
many comparisons between elements of S are needed?

To find the max:

max := S[1];

for i := 2 to n do

if S[i] > max then max:= S[i]

(Note that the min can be found similarly).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 157 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: In general

Find the maximum and minimum elements in an array S[1...n]. How
many comparisons between elements of S are needed?

To find the max:

max := S[1];

for i := 2 to n do

if S[i] > max then max:= S[i]

(Note that the min can be found similarly).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 157 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: In general

Find the maximum and minimum elements in an array S[1...n]. How
many comparisons between elements of S are needed?

To find the max:

max := S[1];

for i := 2 to n do

if S[i] > max then max:= S[i]

(Note that the min can be found similarly).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 157 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: In general

Find the maximum and minimum elements in an array S[1...n]. How
many comparisons between elements of S are needed?

To find the max:

max := S[1];

for i := 2 to n do

if S[i] > max then max:= S[i]

(Note that the min can be found similarly).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 157 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: In general

Find the maximum and minimum elements in an array S[1...n]. How
many comparisons between elements of S are needed?

To find the max:

max := S[1];

for i := 2 to n do

if S[i] > max then max:= S[i]

(Note that the min can be found similarly).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 157 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: In general

Find the maximum and minimum elements in an array S[1...n]. How
many comparisons between elements of S are needed?

To find the max:

max := S[1];

for i := 2 to n do

if S[i] > max then max:= S[i]

(Note that the min can be found similarly).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 157 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: Divide and Conquer Approach

Divide the array into halves. Find the maximum and minimum in each
half recursively. Return the maximum of the two maxima and the
minimum of the two minima.

Function maxmin(x , y) {return max and min S[x ..y]}

If y − x ≤ 1 then

return (max(S[x],S[y]), min(S[x],S[y]))

else

(max1,min1):= maxmin(x ,b(x + y)/2c)

(max2,min2):= maxmin(b(x + y)/2c+ 1,y)

return(max(max1,max2),min(min1,min2))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 158 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: Divide and Conquer Approach

Divide the array into halves. Find the maximum and minimum in each
half recursively. Return the maximum of the two maxima and the
minimum of the two minima.

Function maxmin(x , y) {return max and min S[x ..y]}

If y − x ≤ 1 then

return (max(S[x],S[y]), min(S[x],S[y]))

else

(max1,min1):= maxmin(x ,b(x + y)/2c)

(max2,min2):= maxmin(b(x + y)/2c+ 1,y)

return(max(max1,max2),min(min1,min2))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 158 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: Divide and Conquer Approach

Divide the array into halves. Find the maximum and minimum in each
half recursively. Return the maximum of the two maxima and the
minimum of the two minima.

Function maxmin(x , y) {return max and min S[x ..y]}

If y − x ≤ 1 then

return (max(S[x],S[y]), min(S[x],S[y]))

else

(max1,min1):= maxmin(x ,b(x + y)/2c)

(max2,min2):= maxmin(b(x + y)/2c+ 1,y)

return(max(max1,max2),min(min1,min2))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 158 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: Divide and Conquer Approach

Divide the array into halves. Find the maximum and minimum in each
half recursively. Return the maximum of the two maxima and the
minimum of the two minima.

Function maxmin(x , y) {return max and min S[x ..y]}

If y − x ≤ 1 then

return (max(S[x],S[y]), min(S[x],S[y]))

else

(max1,min1):= maxmin(x ,b(x + y)/2c)

(max2,min2):= maxmin(b(x + y)/2c+ 1,y)

return(max(max1,max2),min(min1,min2))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 158 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: Divide and Conquer Approach

Divide the array into halves. Find the maximum and minimum in each
half recursively. Return the maximum of the two maxima and the
minimum of the two minima.

Function maxmin(x , y) {return max and min S[x ..y]}

If y − x ≤ 1 then

return (max(S[x],S[y]), min(S[x],S[y]))

else

(max1,min1):= maxmin(x ,b(x + y)/2c)

(max2,min2):= maxmin(b(x + y)/2c+ 1,y)

return(max(max1,max2),min(min1,min2))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 158 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: Divide and Conquer Approach

Divide the array into halves. Find the maximum and minimum in each
half recursively. Return the maximum of the two maxima and the
minimum of the two minima.

Function maxmin(x , y) {return max and min S[x ..y]}

If y − x ≤ 1 then

return (max(S[x],S[y]), min(S[x],S[y]))

else

(max1,min1):= maxmin(x ,b(x + y)/2c)

(max2,min2):= maxmin(b(x + y)/2c+ 1,y)

return(max(max1,max2),min(min1,min2))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 158 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: Divide and Conquer Approach

Divide the array into halves. Find the maximum and minimum in each
half recursively. Return the maximum of the two maxima and the
minimum of the two minima.

Function maxmin(x , y) {return max and min S[x ..y]}

If y − x ≤ 1 then

return (max(S[x],S[y]), min(S[x],S[y]))

else

(max1,min1):= maxmin(x ,b(x + y)/2c)

(max2,min2):= maxmin(b(x + y)/2c+ 1,y)

return(max(max1,max2),min(min1,min2))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 158 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: Divide and Conquer Approach

Divide the array into halves. Find the maximum and minimum in each
half recursively. Return the maximum of the two maxima and the
minimum of the two minima.

Function maxmin(x , y) {return max and min S[x ..y]}

If y − x ≤ 1 then

return (max(S[x],S[y]), min(S[x],S[y]))

else

(max1,min1):= maxmin(x ,b(x + y)/2c)

(max2,min2):= maxmin(b(x + y)/2c+ 1,y)

return(max(max1,max2),min(min1,min2))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 158 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: Analysis

Let T (n) be the number of comparisons made by maxmin(x , y) when
n = y − x + 1. Suppose n is a power of 2.

What is the size of the sub problems?

The first sub problem has size b(x + y)/2c − x + 1. If y-x+1 is a power
of 2, then y − x is odd, and hence x + y is odd.

Therefore, ⌊
x + y

2

⌋
− x + 1 =

x + y − 1
2

− x + 1

=
y − x + 1

2
= n/2.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 159 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: Analysis

Let T (n) be the number of comparisons made by maxmin(x , y) when
n = y − x + 1. Suppose n is a power of 2.

What is the size of the sub problems?

The first sub problem has size b(x + y)/2c − x + 1. If y-x+1 is a power
of 2, then y − x is odd, and hence x + y is odd.

Therefore, ⌊
x + y

2

⌋
− x + 1 =

x + y − 1
2

− x + 1

=
y − x + 1

2
= n/2.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 159 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: Analysis

Let T (n) be the number of comparisons made by maxmin(x , y) when
n = y − x + 1. Suppose n is a power of 2.

What is the size of the sub problems?

The first sub problem has size b(x + y)/2c − x + 1. If y-x+1 is a power
of 2, then y − x is odd, and hence x + y is odd.

Therefore, ⌊
x + y

2

⌋
− x + 1 =

x + y − 1
2

− x + 1

=
y − x + 1

2
= n/2.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 159 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Finding Max and Min: Analysis

Let T (n) be the number of comparisons made by maxmin(x , y) when
n = y − x + 1. Suppose n is a power of 2.

What is the size of the sub problems?

The first sub problem has size b(x + y)/2c − x + 1. If y-x+1 is a power
of 2, then y − x is odd, and hence x + y is odd.

Therefore, ⌊
x + y

2

⌋
− x + 1 =

x + y − 1
2

− x + 1

=
y − x + 1

2
= n/2.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 159 / 194

Algorithm Design Strategies Divide and Conquer Techniques

The second sub problem has size y − (b(x + y)/2c+ 1) + 1.

Therefore,

y −
(⌊

x + y]

2

⌋
+ 1
)

+ 1 = y − x + y − 1
2

=
y − x + 1

2
= n/2.

So when n is a power of 2, procedure maxmin on an array chunks of
size n calls itself twice on array chunks of size n/2.

Therefore,

T (n) =

{
1, if n = 2
2T (n/2) + 2, otherwise

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 160 / 194

Algorithm Design Strategies Divide and Conquer Techniques

The second sub problem has size y − (b(x + y)/2c+ 1) + 1.

Therefore,

y −
(⌊

x + y]

2

⌋
+ 1
)

+ 1 = y − x + y − 1
2

=
y − x + 1

2
= n/2.

So when n is a power of 2, procedure maxmin on an array chunks of
size n calls itself twice on array chunks of size n/2.

Therefore,

T (n) =

{
1, if n = 2
2T (n/2) + 2, otherwise

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 160 / 194

Algorithm Design Strategies Divide and Conquer Techniques

The second sub problem has size y − (b(x + y)/2c+ 1) + 1.

Therefore,

y −
(⌊

x + y]

2

⌋
+ 1
)

+ 1 = y − x + y − 1
2

=
y − x + 1

2
= n/2.

So when n is a power of 2, procedure maxmin on an array chunks of
size n calls itself twice on array chunks of size n/2.

Therefore,

T (n) =

{
1, if n = 2
2T (n/2) + 2, otherwise

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 160 / 194

Algorithm Design Strategies Divide and Conquer Techniques

The second sub problem has size y − (b(x + y)/2c+ 1) + 1.

Therefore,

y −
(⌊

x + y]

2

⌋
+ 1
)

+ 1 = y − x + y − 1
2

=
y − x + 1

2
= n/2.

So when n is a power of 2, procedure maxmin on an array chunks of
size n calls itself twice on array chunks of size n/2.

Therefore,

T (n) =

{
1, if n = 2
2T (n/2) + 2, otherwise

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 160 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Since the maximum and minimum are finding recursively in each half,

T (n) = 2T (n/2) + 2
= 2(2T (n/4) + 2) + 2
= 4T (n/4) + 4 + 2
= 8T (n/8) + 8 + 4 + 2

= 2iT (n/2i) +
i∑

j=1

2j

= 2logn−1T (2) +

logn−1∑
j=1

2j

= n/2 + (2logn − 2)

= 1.5n − 2

Therefore function maxmim uses only 75% as many comparisons as
the naive algorithm.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 161 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Since the maximum and minimum are finding recursively in each half,

T (n) = 2T (n/2) + 2
= 2(2T (n/4) + 2) + 2
= 4T (n/4) + 4 + 2
= 8T (n/8) + 8 + 4 + 2

= 2iT (n/2i) +
i∑

j=1

2j

= 2logn−1T (2) +

logn−1∑
j=1

2j

= n/2 + (2logn − 2)

= 1.5n − 2

Therefore function maxmim uses only 75% as many comparisons as
the naive algorithm.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 161 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Since the maximum and minimum are finding recursively in each half,

T (n) = 2T (n/2) + 2
= 2(2T (n/4) + 2) + 2
= 4T (n/4) + 4 + 2
= 8T (n/8) + 8 + 4 + 2

= 2iT (n/2i) +
i∑

j=1

2j

= 2logn−1T (2) +

logn−1∑
j=1

2j

= n/2 + (2logn − 2)

= 1.5n − 2

Therefore function maxmim uses only 75% as many comparisons as
the naive algorithm.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 161 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Multiplication

Given positive integers y ,z, compute x = yz.

In the naive multiplication algorithm addition takes O(n) bit operations
and multiplication takes O(n), n−bit operations, where n is the number
of bits in y and z

Therefore, the naive multiplication algorithm takes O(n2) bit operations

Can we multiply using fewer bit operation?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 162 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Multiplication

Given positive integers y ,z, compute x = yz.

In the naive multiplication algorithm addition takes O(n) bit operations
and multiplication takes O(n), n−bit operations, where n is the number
of bits in y and z

Therefore, the naive multiplication algorithm takes O(n2) bit operations

Can we multiply using fewer bit operation?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 162 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Multiplication

Given positive integers y ,z, compute x = yz.

In the naive multiplication algorithm addition takes O(n) bit operations
and multiplication takes O(n), n−bit operations, where n is the number
of bits in y and z

Therefore, the naive multiplication algorithm takes O(n2) bit operations

Can we multiply using fewer bit operation?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 162 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Multiplication

Given positive integers y ,z, compute x = yz.

In the naive multiplication algorithm addition takes O(n) bit operations
and multiplication takes O(n), n−bit operations, where n is the number
of bits in y and z

Therefore, the naive multiplication algorithm takes O(n2) bit operations

Can we multiply using fewer bit operation?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 162 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Multiplication: Divide and Conquer Approach

Suppose n is a power of 2. Divide y and z into two halves, each with
n/2 bits.

y a b
z c d

Then

y = a2n/2 + b

z = c2n/2 + d

And so

yz = (a2n/2 + b)(c2n/2 + d)

= ac2n + (ad + bc)2n/2 + bd

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 163 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Multiplication: Divide and Conquer Approach

Suppose n is a power of 2. Divide y and z into two halves, each with
n/2 bits.

y a b
z c d

Then

y = a2n/2 + b

z = c2n/2 + d

And so

yz = (a2n/2 + b)(c2n/2 + d)

= ac2n + (ad + bc)2n/2 + bd

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 163 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Multiplication: Divide and Conquer Approach

Suppose n is a power of 2. Divide y and z into two halves, each with
n/2 bits.

y a b
z c d

Then

y = a2n/2 + b

z = c2n/2 + d

And so

yz = (a2n/2 + b)(c2n/2 + d)

= ac2n + (ad + bc)2n/2 + bd

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 163 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Multiplication: Divide and Conquer Approach

Suppose n is a power of 2. Divide y and z into two halves, each with
n/2 bits.

y a b
z c d

Then

y = a2n/2 + b

z = c2n/2 + d

And so

yz = (a2n/2 + b)(c2n/2 + d)

= ac2n + (ad + bc)2n/2 + bd

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 163 / 194

Algorithm Design Strategies Divide and Conquer Techniques

This computes yz with 4 multiplication of n/2 bit numbers, and some
additions and shifts.

Running time given by T (1) = α, T (n) = 4T (n/2) + βn, where α and β
are constants, which has solution O(n2) by the general theorem. No
gain over naive algorithm!

But x = yz can also be computed as follows:

u := (a + b)(c + d)

v := ac
w := bd

x := v2n + (u − v − w)2n/2 + w

Thus to multiply n bits numbers we need 3 multiplications of n/2 bit
numbers and a constant number of additions and shifts.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 164 / 194

Algorithm Design Strategies Divide and Conquer Techniques

This computes yz with 4 multiplication of n/2 bit numbers, and some
additions and shifts.

Running time given by T (1) = α, T (n) = 4T (n/2) + βn, where α and β
are constants, which has solution O(n2) by the general theorem. No
gain over naive algorithm!

But x = yz can also be computed as follows:

u := (a + b)(c + d)

v := ac
w := bd

x := v2n + (u − v − w)2n/2 + w

Thus to multiply n bits numbers we need 3 multiplications of n/2 bit
numbers and a constant number of additions and shifts.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 164 / 194

Algorithm Design Strategies Divide and Conquer Techniques

This computes yz with 4 multiplication of n/2 bit numbers, and some
additions and shifts.

Running time given by T (1) = α, T (n) = 4T (n/2) + βn, where α and β
are constants, which has solution O(n2) by the general theorem. No
gain over naive algorithm!

But x = yz can also be computed as follows:

u := (a + b)(c + d)

v := ac
w := bd

x := v2n + (u − v − w)2n/2 + w

Thus to multiply n bits numbers we need 3 multiplications of n/2 bit
numbers and a constant number of additions and shifts.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 164 / 194

Algorithm Design Strategies Divide and Conquer Techniques

This computes yz with 4 multiplication of n/2 bit numbers, and some
additions and shifts.

Running time given by T (1) = α, T (n) = 4T (n/2) + βn, where α and β
are constants, which has solution O(n2) by the general theorem. No
gain over naive algorithm!

But x = yz can also be computed as follows:

u := (a + b)(c + d)

v := ac
w := bd

x := v2n + (u − v − w)2n/2 + w

Thus to multiply n bits numbers we need 3 multiplications of n/2 bit
numbers and a constant number of additions and shifts.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 164 / 194

Algorithm Design Strategies Divide and Conquer Techniques

This computes yz with 4 multiplication of n/2 bit numbers, and some
additions and shifts.

Running time given by T (1) = α, T (n) = 4T (n/2) + βn, where α and β
are constants, which has solution O(n2) by the general theorem. No
gain over naive algorithm!

But x = yz can also be computed as follows:

u := (a + b)(c + d)

v := ac
w := bd

x := v2n + (u − v − w)2n/2 + w

Thus to multiply n bits numbers we need 3 multiplications of n/2 bit
numbers and a constant number of additions and shifts.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 164 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Multiplication: Analysis

Therefore,

T (n) =

{
α, if n = 1
3T (n/2) + βn, otherwise

Assignment 2: Prove that the divide and conquer multiplication
algorithm uses

T (n) = O(nlog3) = O(n1.59),

bit operations.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 165 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Multiplication: Analysis

Therefore,

T (n) =

{
α, if n = 1
3T (n/2) + βn, otherwise

Assignment 2: Prove that the divide and conquer multiplication
algorithm uses

T (n) = O(nlog3) = O(n1.59),

bit operations.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 165 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Matrix Multiplication

The naive matrix multiplication algorithm:

Procedure matmultiply(X ,Y ,Z ,n) {multiplies n ∗ n matrices X := YZ}
for i := 1 to n do

for j := 1 to n do
X [i , j] := 0
for k := 1 to n do

X [i , j] := X [i , j] + Y [i , k] ∗ Z [k , j];

Assume that all integer operations take O(1) time. The naive matrix
multiplication algorithm then takes time O(n3). Can we do better?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 166 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Matrix Multiplication

The naive matrix multiplication algorithm:

Procedure matmultiply(X ,Y ,Z ,n) {multiplies n ∗ n matrices X := YZ}
for i := 1 to n do

for j := 1 to n do
X [i , j] := 0
for k := 1 to n do

X [i , j] := X [i , j] + Y [i , k] ∗ Z [k , j];

Assume that all integer operations take O(1) time. The naive matrix
multiplication algorithm then takes time O(n3). Can we do better?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 166 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Matrix Multiplication

The naive matrix multiplication algorithm:

Procedure matmultiply(X ,Y ,Z ,n) {multiplies n ∗ n matrices X := YZ}
for i := 1 to n do

for j := 1 to n do
X [i , j] := 0
for k := 1 to n do

X [i , j] := X [i , j] + Y [i , k] ∗ Z [k , j];

Assume that all integer operations take O(1) time. The naive matrix
multiplication algorithm then takes time O(n3). Can we do better?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 166 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Matrix Multiplication

The naive matrix multiplication algorithm:

Procedure matmultiply(X ,Y ,Z ,n) {multiplies n ∗ n matrices X := YZ}
for i := 1 to n do

for j := 1 to n do
X [i , j] := 0
for k := 1 to n do

X [i , j] := X [i , j] + Y [i , k] ∗ Z [k , j];

Assume that all integer operations take O(1) time. The naive matrix
multiplication algorithm then takes time O(n3). Can we do better?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 166 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Matrix Multiplication

The naive matrix multiplication algorithm:

Procedure matmultiply(X ,Y ,Z ,n) {multiplies n ∗ n matrices X := YZ}
for i := 1 to n do

for j := 1 to n do
X [i , j] := 0
for k := 1 to n do

X [i , j] := X [i , j] + Y [i , k] ∗ Z [k , j];

Assume that all integer operations take O(1) time. The naive matrix
multiplication algorithm then takes time O(n3). Can we do better?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 166 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Matrix Multiplication

The naive matrix multiplication algorithm:

Procedure matmultiply(X ,Y ,Z ,n) {multiplies n ∗ n matrices X := YZ}
for i := 1 to n do

for j := 1 to n do
X [i , j] := 0
for k := 1 to n do

X [i , j] := X [i , j] + Y [i , k] ∗ Z [k , j];

Assume that all integer operations take O(1) time. The naive matrix
multiplication algorithm then takes time O(n3). Can we do better?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 166 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Matrix Multiplication

The naive matrix multiplication algorithm:

Procedure matmultiply(X ,Y ,Z ,n) {multiplies n ∗ n matrices X := YZ}
for i := 1 to n do

for j := 1 to n do
X [i , j] := 0
for k := 1 to n do

X [i , j] := X [i , j] + Y [i , k] ∗ Z [k , j];

Assume that all integer operations take O(1) time. The naive matrix
multiplication algorithm then takes time O(n3). Can we do better?

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 166 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Matrix Multiplication: Divide and Conquer Approach

Divide X ,Y ,Z each into four (n/2) ∗ (n/2) matrices.

X =

[
I J
K L

]
Y =

[
A B
C D

]
Z =

[
E F
G H

]
Then

I = AE + BG
J = AF + BH
K = CE + DG
L = CF + DH

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 167 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Matrix Multiplication: Divide and Conquer Approach

Divide X ,Y ,Z each into four (n/2) ∗ (n/2) matrices.

X =

[
I J
K L

]
Y =

[
A B
C D

]
Z =

[
E F
G H

]
Then

I = AE + BG
J = AF + BH
K = CE + DG
L = CF + DH

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 167 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Matrix Multiplication: Divide and Conquer Approach

Divide X ,Y ,Z each into four (n/2) ∗ (n/2) matrices.

X =

[
I J
K L

]
Y =

[
A B
C D

]
Z =

[
E F
G H

]
Then

I = AE + BG
J = AF + BH
K = CE + DG
L = CF + DH

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 167 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Matrix Multiplication: Analysis

Let T (n) be the time to multiply two n × n matrices.

Thus,

T (n) =

{
c, if n = 1
8T (n/2) + dn2, otherwise

where c,d are constants.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 168 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Matrix Multiplication: Analysis

Let T (n) be the time to multiply two n × n matrices.

Thus,

T (n) =

{
c, if n = 1
8T (n/2) + dn2, otherwise

where c,d are constants.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 168 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Therefore,

T (n) = 8T (n/2) + dn2

= 8(8T (n/4) + d(n/2)2) + dn2

= 82T (n/4) + 2dn2 + dn2

= 83(T (n/8) + 4dn2 + 2dn2 + dn2

= 8iT (n/2i) + dn2
i∑

j=0

2j

= 8log nT (1) + dn2
logn−1∑

j=0

2j

= cn3 + dn2(n − 1)

= O(n3).

Hence the approach gain us nothing.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 169 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Therefore,

T (n) = 8T (n/2) + dn2

= 8(8T (n/4) + d(n/2)2) + dn2

= 82T (n/4) + 2dn2 + dn2

= 83(T (n/8) + 4dn2 + 2dn2 + dn2

= 8iT (n/2i) + dn2
i∑

j=0

2j

= 8log nT (1) + dn2
logn−1∑

j=0

2j

= cn3 + dn2(n − 1)

= O(n3).

Hence the approach gain us nothing.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 169 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Strassen’s Algorithm for Matrix Multiplication

Compute

M1 := (A + C)(E + F)

M2 := (B + D)(G + H)

M3 := (A− D)(E + H)

M4 := A(F − H)

M5 := (C + D)E
M6 := (A + B)H
M7 := D(G − E)

Then

I := M2 + M3 −M6 −M7

J := M4 + M6

K := M5 + M7

L := M1 −M3 −M4 −M5
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 170 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Analysis of Strassen’s Algorithm

Therefore,

T (n) =

{
c, if n = 1
7T (n/2) + dn2, otherwise

where c,d are constants.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 171 / 194

Algorithm Design Strategies Divide and Conquer Techniques

T (n) = 7T (n/2) + dn2

= 7(7T (n/4) + d(n/2)2) + dn2

= 72T (n/4) + 7dn2/4 + dn2

= 73T (n/8) + 72dn2/42 + 7dn2/4 + dn2

= 7iT (n/2i) + dn2
i−1∑
j=0

(7/4)j

= 7log nT (1) + dn2
log n−1∑

j=0

(7/4)j

= cnlog 7 + dn2 (7/4)log n − 1
(7/4)− 1

= cnlog 7 +
4
3

dn2(
nlog 7

n2 − 1)

= O(nlog 7) ≈ O(n2.8).
Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 172 / 194

Algorithm Design Strategies Divide and Conquer Techniques

Improved Algorithms

Integer multiplication:O(nlognloglogn).

Schonhage and Strassen, ”Schnelle multiplication grosser
zahlen”, Computing , Vol. 7, 281-292, 1971.

Matrix multiplication: O(n2.376).

Copper smith and Winograd , ”Matrix multiplication via arithmetic
progressions”, Journal of Symbolic Computation Vol. 9, pp.
251-280, 1990.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 173 / 194

Algorithm Design Strategies Dynamic Programming

Introduction to Dynamic Programming

When divide and conquer generates a large number of identical sub
problems, recursion is too expensive.

Instead, store solutions to sub problems in a table.

This technique is called dynamic programming.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 174 / 194

Algorithm Design Strategies Dynamic Programming

Introduction to Dynamic Programming

When divide and conquer generates a large number of identical sub
problems, recursion is too expensive.

Instead, store solutions to sub problems in a table.

This technique is called dynamic programming.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 174 / 194

Algorithm Design Strategies Dynamic Programming

Introduction to Dynamic Programming

When divide and conquer generates a large number of identical sub
problems, recursion is too expensive.

Instead, store solutions to sub problems in a table.

This technique is called dynamic programming.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 174 / 194

Algorithm Design Strategies Dynamic Programming

Dynamic Programming Technique

To design a dynamic programming algorithm:

Identification:

Devise divide and conquer algorithm

Analyze: running time is exponential

Same sub problems solved many times

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 175 / 194

Algorithm Design Strategies Dynamic Programming

Dynamic Programming Technique

To design a dynamic programming algorithm:

Identification:

Devise divide and conquer algorithm

Analyze: running time is exponential

Same sub problems solved many times

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 175 / 194

Algorithm Design Strategies Dynamic Programming

Dynamic Programming Technique

To design a dynamic programming algorithm:

Identification:

Devise divide and conquer algorithm

Analyze: running time is exponential

Same sub problems solved many times

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 175 / 194

Algorithm Design Strategies Dynamic Programming

Dynamic Programming Technique

To design a dynamic programming algorithm:

Identification:

Devise divide and conquer algorithm

Analyze: running time is exponential

Same sub problems solved many times

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 175 / 194

Algorithm Design Strategies Dynamic Programming

Dynamic Programming Technique

To design a dynamic programming algorithm:

Identification:

Devise divide and conquer algorithm

Analyze: running time is exponential

Same sub problems solved many times

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 175 / 194

Algorithm Design Strategies Dynamic Programming

Construction:

Take part of divide and conquer algorithm that does the ”conquer”
part and replace recursive calls with table look-ups

Instead of returning a value, record it in a table entry

Use base of divide and conquer to fill in start of table

Devise ”look-up template ”

Devise for-loops that fill the table using ”look-up template”

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 176 / 194

Algorithm Design Strategies Dynamic Programming

Construction:

Take part of divide and conquer algorithm that does the ”conquer”
part and replace recursive calls with table look-ups

Instead of returning a value, record it in a table entry

Use base of divide and conquer to fill in start of table

Devise ”look-up template ”

Devise for-loops that fill the table using ”look-up template”

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 176 / 194

Algorithm Design Strategies Dynamic Programming

Construction:

Take part of divide and conquer algorithm that does the ”conquer”
part and replace recursive calls with table look-ups

Instead of returning a value, record it in a table entry

Use base of divide and conquer to fill in start of table

Devise ”look-up template ”

Devise for-loops that fill the table using ”look-up template”

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 176 / 194

Algorithm Design Strategies Dynamic Programming

Construction:

Take part of divide and conquer algorithm that does the ”conquer”
part and replace recursive calls with table look-ups

Instead of returning a value, record it in a table entry

Use base of divide and conquer to fill in start of table

Devise ”look-up template ”

Devise for-loops that fill the table using ”look-up template”

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 176 / 194

Algorithm Design Strategies Dynamic Programming

Construction:

Take part of divide and conquer algorithm that does the ”conquer”
part and replace recursive calls with table look-ups

Instead of returning a value, record it in a table entry

Use base of divide and conquer to fill in start of table

Devise ”look-up template ”

Devise for-loops that fill the table using ”look-up template”

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 176 / 194

Algorithm Design Strategies Dynamic Programming

Construction:

Take part of divide and conquer algorithm that does the ”conquer”
part and replace recursive calls with table look-ups

Instead of returning a value, record it in a table entry

Use base of divide and conquer to fill in start of table

Devise ”look-up template ”

Devise for-loops that fill the table using ”look-up template”

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 176 / 194

Algorithm Design Strategies Dynamic Programming

Applications

Dynamic programming: divide and conquer with a table.

Application to:

Counting combinations

Knapsack problem

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 177 / 194

Algorithm Design Strategies Dynamic Programming

Applications

Dynamic programming: divide and conquer with a table.

Application to:

Counting combinations

Knapsack problem

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 177 / 194

Algorithm Design Strategies Dynamic Programming

Applications

Dynamic programming: divide and conquer with a table.

Application to:

Counting combinations

Knapsack problem

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 177 / 194

Algorithm Design Strategies Dynamic Programming

Applications

Dynamic programming: divide and conquer with a table.

Application to:

Counting combinations

Knapsack problem

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 177 / 194

Algorithm Design Strategies Dynamic Programming

Counting Combinations

To choose r things out of n, either

Choose the first item. Then we must choose the remaining r − 1
items from the other n − 1 items.

or

Don’t choose the first item. Then we must choose the r items from
the other n − 1 items.

Therefore, (
n
r

)
=

(
n − 1
r − 1

)
+

(
n − 1

r

)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 178 / 194

Algorithm Design Strategies Dynamic Programming

Counting Combinations

To choose r things out of n, either

Choose the first item. Then we must choose the remaining r − 1
items from the other n − 1 items.

or

Don’t choose the first item. Then we must choose the r items from
the other n − 1 items.

Therefore, (
n
r

)
=

(
n − 1
r − 1

)
+

(
n − 1

r

)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 178 / 194

Algorithm Design Strategies Dynamic Programming

Counting Combinations

To choose r things out of n, either

Choose the first item. Then we must choose the remaining r − 1
items from the other n − 1 items.

or

Don’t choose the first item. Then we must choose the r items from
the other n − 1 items.

Therefore, (
n
r

)
=

(
n − 1
r − 1

)
+

(
n − 1

r

)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 178 / 194

Algorithm Design Strategies Dynamic Programming

Counting Combinations

To choose r things out of n, either

Choose the first item. Then we must choose the remaining r − 1
items from the other n − 1 items.

or

Don’t choose the first item. Then we must choose the r items from
the other n − 1 items.

Therefore, (
n
r

)
=

(
n − 1
r − 1

)
+

(
n − 1

r

)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 178 / 194

Algorithm Design Strategies Dynamic Programming

Counting Combinations

To choose r things out of n, either

Choose the first item. Then we must choose the remaining r − 1
items from the other n − 1 items.

or

Don’t choose the first item. Then we must choose the r items from
the other n − 1 items.

Therefore, (
n
r

)
=

(
n − 1
r − 1

)
+

(
n − 1

r

)

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 178 / 194

Algorithm Design Strategies Dynamic Programming

Divide and Conquer

This gives a simple divide and conquer algorithm for finding the
number of combinations of n things chosen r at a time.

function choose (n, r)

If r = 0 or n = r then return 1

else return(choose (n − 1,r − 1)+choose(n − 1,r))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 179 / 194

Algorithm Design Strategies Dynamic Programming

Divide and Conquer

This gives a simple divide and conquer algorithm for finding the
number of combinations of n things chosen r at a time.

function choose (n, r)

If r = 0 or n = r then return 1

else return(choose (n − 1,r − 1)+choose(n − 1,r))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 179 / 194

Algorithm Design Strategies Dynamic Programming

Divide and Conquer

This gives a simple divide and conquer algorithm for finding the
number of combinations of n things chosen r at a time.

function choose (n, r)

If r = 0 or n = r then return 1

else return(choose (n − 1,r − 1)+choose(n − 1,r))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 179 / 194

Algorithm Design Strategies Dynamic Programming

Divide and Conquer

This gives a simple divide and conquer algorithm for finding the
number of combinations of n things chosen r at a time.

function choose (n, r)

If r = 0 or n = r then return 1

else return(choose (n − 1,r − 1)+choose(n − 1,r))

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 179 / 194

Algorithm Design Strategies Dynamic Programming

Analysis : Let T (n) be the worst case running time of choose(n, r) over
all possible values of r .

Then,

T (n) =

{
c if n = 1
2T (n − 1) + d otherwise

for some constants c, d .

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 180 / 194

Algorithm Design Strategies Dynamic Programming

Analysis : Let T (n) be the worst case running time of choose(n, r) over
all possible values of r .

Then,

T (n) =

{
c if n = 1
2T (n − 1) + d otherwise

for some constants c, d .

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 180 / 194

Algorithm Design Strategies Dynamic Programming

Analysis : Let T (n) be the worst case running time of choose(n, r) over
all possible values of r .

Then,

T (n) =

{
c if n = 1
2T (n − 1) + d otherwise

for some constants c, d .

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 180 / 194

Algorithm Design Strategies Dynamic Programming

Hence,

T (n) = 2T (n − 1) + d
= 2(2T (n − 2) + d) + d
= 4T (n − 2) + 2d + d
= 4(2T (n − 3) + d) + 2 + d
= 8T (n − 3) + 4d + 2d + d

= 2iT (n − i) + d
i−1∑
j=0

2j

= 2n−1T (1) + d
n−2∑
j=0

2j

= (c + d)2n−1 − d

Hence, T (n) = O(2n−1).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 181 / 194

Algorithm Design Strategies Dynamic Programming

The problem is, the algorithm solves the same sub problem over and
over again!

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 182 / 194

Algorithm Design Strategies Dynamic Programming

A Better Algorithm: Dynamic Programming

Pascal’s Triangle. Use a table T [0...n,0...r].

T [i , j] holds
(i

j

)
.

function choose (n, r)

for i := 0 to n − r do T [i ,0] := 1;

for i := 0 to r do T [i , i] := 1;

for j := 1 to r do

for i := j + 1 to n − r + j do

T [i , j] := T [i − 1, j − 1] + T [i − 1, j]

return(T [n, r])

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 183 / 194

Algorithm Design Strategies Dynamic Programming

A Better Algorithm: Dynamic Programming

Pascal’s Triangle. Use a table T [0...n,0...r].

T [i , j] holds
(i

j

)
.

function choose (n, r)

for i := 0 to n − r do T [i ,0] := 1;

for i := 0 to r do T [i , i] := 1;

for j := 1 to r do

for i := j + 1 to n − r + j do

T [i , j] := T [i − 1, j − 1] + T [i − 1, j]

return(T [n, r])

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 183 / 194

Algorithm Design Strategies Dynamic Programming

A Better Algorithm: Dynamic Programming

Pascal’s Triangle. Use a table T [0...n,0...r].

T [i , j] holds
(i

j

)
.

function choose (n, r)

for i := 0 to n − r do T [i ,0] := 1;

for i := 0 to r do T [i , i] := 1;

for j := 1 to r do

for i := j + 1 to n − r + j do

T [i , j] := T [i − 1, j − 1] + T [i − 1, j]

return(T [n, r])

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 183 / 194

Algorithm Design Strategies Dynamic Programming

A Better Algorithm: Dynamic Programming

Pascal’s Triangle. Use a table T [0...n,0...r].

T [i , j] holds
(i

j

)
.

function choose (n, r)

for i := 0 to n − r do T [i ,0] := 1;

for i := 0 to r do T [i , i] := 1;

for j := 1 to r do

for i := j + 1 to n − r + j do

T [i , j] := T [i − 1, j − 1] + T [i − 1, j]

return(T [n, r])

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 183 / 194

Algorithm Design Strategies Dynamic Programming

A Better Algorithm: Dynamic Programming

Pascal’s Triangle. Use a table T [0...n,0...r].

T [i , j] holds
(i

j

)
.

function choose (n, r)

for i := 0 to n − r do T [i ,0] := 1;

for i := 0 to r do T [i , i] := 1;

for j := 1 to r do

for i := j + 1 to n − r + j do

T [i , j] := T [i − 1, j − 1] + T [i − 1, j]

return(T [n, r])

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 183 / 194

Algorithm Design Strategies Dynamic Programming

A Better Algorithm: Dynamic Programming

Pascal’s Triangle. Use a table T [0...n,0...r].

T [i , j] holds
(i

j

)
.

function choose (n, r)

for i := 0 to n − r do T [i ,0] := 1;

for i := 0 to r do T [i , i] := 1;

for j := 1 to r do

for i := j + 1 to n − r + j do

T [i , j] := T [i − 1, j − 1] + T [i − 1, j]

return(T [n, r])

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 183 / 194

Algorithm Design Strategies Dynamic Programming

A Better Algorithm: Dynamic Programming

Pascal’s Triangle. Use a table T [0...n,0...r].

T [i , j] holds
(i

j

)
.

function choose (n, r)

for i := 0 to n − r do T [i ,0] := 1;

for i := 0 to r do T [i , i] := 1;

for j := 1 to r do

for i := j + 1 to n − r + j do

T [i , j] := T [i − 1, j − 1] + T [i − 1, j]

return(T [n, r])

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 183 / 194

Algorithm Design Strategies Dynamic Programming

A Better Algorithm: Dynamic Programming

Pascal’s Triangle. Use a table T [0...n,0...r].

T [i , j] holds
(i

j

)
.

function choose (n, r)

for i := 0 to n − r do T [i ,0] := 1;

for i := 0 to r do T [i , i] := 1;

for j := 1 to r do

for i := j + 1 to n − r + j do

T [i , j] := T [i − 1, j − 1] + T [i − 1, j]

return(T [n, r])

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 183 / 194

Algorithm Design Strategies Dynamic Programming

A Better Algorithm: Dynamic Programming

Pascal’s Triangle. Use a table T [0...n,0...r].

T [i , j] holds
(i

j

)
.

function choose (n, r)

for i := 0 to n − r do T [i ,0] := 1;

for i := 0 to r do T [i , i] := 1;

for j := 1 to r do

for i := j + 1 to n − r + j do

T [i , j] := T [i − 1, j − 1] + T [i − 1, j]

return(T [n, r])

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 183 / 194

Algorithm Design Strategies Dynamic Programming

Initialization

Figure

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 184 / 194

Algorithm Design Strategies Dynamic Programming

General Rule

To fill in T [i , j], we need T [i − 1, j − 1] and T [i − 1, j] to be already filled
in.

Figure

Fill in the rows from left to right. Fill in each of the columns from top to
bottom.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 185 / 194

Algorithm Design Strategies Dynamic Programming

General Rule

To fill in T [i , j], we need T [i − 1, j − 1] and T [i − 1, j] to be already filled
in.

Figure

Fill in the rows from left to right. Fill in each of the columns from top to
bottom.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 185 / 194

Algorithm Design Strategies Dynamic Programming

General Rule

To fill in T [i , j], we need T [i − 1, j − 1] and T [i − 1, j] to be already filled
in.

Figure

Fill in the rows from left to right. Fill in each of the columns from top to
bottom.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 185 / 194

Algorithm Design Strategies Dynamic Programming

Example

Figure

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 186 / 194

Algorithm Design Strategies Dynamic Programming

Analysis

How many table entries are filled in?

(n − r + 1)(r + 1) = nr + n − r2 + 1 ≤ n(r + 1) + 1

Each entry takes time O(1), so total time required is O(n2).

This is much better than O(2n).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 187 / 194

Algorithm Design Strategies Dynamic Programming

Analysis

How many table entries are filled in?

(n − r + 1)(r + 1) = nr + n − r2 + 1 ≤ n(r + 1) + 1

Each entry takes time O(1), so total time required is O(n2).

This is much better than O(2n).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 187 / 194

Algorithm Design Strategies Dynamic Programming

Analysis

How many table entries are filled in?

(n − r + 1)(r + 1) = nr + n − r2 + 1 ≤ n(r + 1) + 1

Each entry takes time O(1), so total time required is O(n2).

This is much better than O(2n).

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 187 / 194

Algorithm Design Strategies Greedy Algorithms

Greedy Algorithms

Start with a solution to a small sub problem

Build up to a solution to the whole problem

Make choices that look good in the short term

Disadvantage: Greedy algorithms don’t always work. (Short term
solutions can be disastrous in the long term.) Hard to prove
correctness.

Advantage: Greedy algorithms work fast when they work. Simple
algorithms, easy to implement.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 188 / 194

Algorithm Design Strategies Greedy Algorithms

Greedy Algorithms

Start with a solution to a small sub problem

Build up to a solution to the whole problem

Make choices that look good in the short term

Disadvantage: Greedy algorithms don’t always work. (Short term
solutions can be disastrous in the long term.) Hard to prove
correctness.

Advantage: Greedy algorithms work fast when they work. Simple
algorithms, easy to implement.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 188 / 194

Algorithm Design Strategies Greedy Algorithms

Greedy Algorithms

Start with a solution to a small sub problem

Build up to a solution to the whole problem

Make choices that look good in the short term

Disadvantage: Greedy algorithms don’t always work. (Short term
solutions can be disastrous in the long term.) Hard to prove
correctness.

Advantage: Greedy algorithms work fast when they work. Simple
algorithms, easy to implement.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 188 / 194

Algorithm Design Strategies Greedy Algorithms

Greedy Algorithms

Start with a solution to a small sub problem

Build up to a solution to the whole problem

Make choices that look good in the short term

Disadvantage: Greedy algorithms don’t always work. (Short term
solutions can be disastrous in the long term.) Hard to prove
correctness.

Advantage: Greedy algorithms work fast when they work. Simple
algorithms, easy to implement.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 188 / 194

Algorithm Design Strategies Greedy Algorithms

Greedy Algorithms

Start with a solution to a small sub problem

Build up to a solution to the whole problem

Make choices that look good in the short term

Disadvantage: Greedy algorithms don’t always work. (Short term
solutions can be disastrous in the long term.) Hard to prove
correctness.

Advantage: Greedy algorithms work fast when they work. Simple
algorithms, easy to implement.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 188 / 194

Algorithm Design Strategies Greedy Algorithms

Greedy Algorithms

Start with a solution to a small sub problem

Build up to a solution to the whole problem

Make choices that look good in the short term

Disadvantage: Greedy algorithms don’t always work. (Short term
solutions can be disastrous in the long term.) Hard to prove
correctness.

Advantage: Greedy algorithms work fast when they work. Simple
algorithms, easy to implement.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 188 / 194

Algorithm Design Strategies Greedy Algorithms

Greedy algorithms for

Optimal tape storage

Continuous knapsack problem

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 189 / 194

Algorithm Design Strategies Greedy Algorithms

Greedy algorithms for

Optimal tape storage

Continuous knapsack problem

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 189 / 194

Algorithm Design Strategies Greedy Algorithms

Greedy algorithms for

Optimal tape storage

Continuous knapsack problem

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 189 / 194

Algorithm Design Strategies Greedy Algorithms

Optimal Tape Storage

Optimal Tape Storage Given n files of length m1, m2,..., mn,

find which order is the best to store them on a tape, assuming

each retrieval starts with the tape rewound.

each retrieval takes time equal to the length of the preceding files
in the tape plus the length of the retrieved file.

all files are to be retrieved.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 190 / 194

Algorithm Design Strategies Greedy Algorithms

Optimal Tape Storage

Optimal Tape Storage Given n files of length m1, m2,..., mn,

find which order is the best to store them on a tape, assuming

each retrieval starts with the tape rewound.

each retrieval takes time equal to the length of the preceding files
in the tape plus the length of the retrieved file.

all files are to be retrieved.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 190 / 194

Algorithm Design Strategies Greedy Algorithms

Optimal Tape Storage

Optimal Tape Storage Given n files of length m1, m2,..., mn,

find which order is the best to store them on a tape, assuming

each retrieval starts with the tape rewound.

each retrieval takes time equal to the length of the preceding files
in the tape plus the length of the retrieved file.

all files are to be retrieved.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 190 / 194

Algorithm Design Strategies Greedy Algorithms

Optimal Tape Storage

Optimal Tape Storage Given n files of length m1, m2,..., mn,

find which order is the best to store them on a tape, assuming

each retrieval starts with the tape rewound.

each retrieval takes time equal to the length of the preceding files
in the tape plus the length of the retrieved file.

all files are to be retrieved.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 190 / 194

Algorithm Design Strategies Greedy Algorithms

Optimal Tape Storage

Optimal Tape Storage Given n files of length m1, m2,..., mn,

find which order is the best to store them on a tape, assuming

each retrieval starts with the tape rewound.

each retrieval takes time equal to the length of the preceding files
in the tape plus the length of the retrieved file.

all files are to be retrieved.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 190 / 194

Algorithm Design Strategies Greedy Algorithms

Optimal Tape Storage

Optimal Tape Storage Given n files of length m1, m2,..., mn,

find which order is the best to store them on a tape, assuming

each retrieval starts with the tape rewound.

each retrieval takes time equal to the length of the preceding files
in the tape plus the length of the retrieved file.

all files are to be retrieved.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 190 / 194

Algorithm Design Strategies Greedy Algorithms

Example

Example n = 3; m1 = 5, m2 = 10, m3 = 3.

There are 3! = 6 possible orders.

1,2,3: (5 + 10 + 3) + (5 + 10) + 5 = 38

1,3,2: (5 + 3 + 10) + (5 + 3) + 5 = 31

2,1,3: (10 + 5 + 3) + (10 + 5) + 10 = 43

2,3,1: (10 + 3 + 5) + (10 + 3) + 10 = 41

3,1,2: (3 + 5 + 10) + (3 + 5) + 3 = 29

3,2,1: (3 + 10 + 5) + (3 + 10) + 3 = 34

The best order is 3,1,2.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 191 / 194

Algorithm Design Strategies Greedy Algorithms

Example

Example n = 3; m1 = 5, m2 = 10, m3 = 3.

There are 3! = 6 possible orders.

1,2,3: (5 + 10 + 3) + (5 + 10) + 5 = 38

1,3,2: (5 + 3 + 10) + (5 + 3) + 5 = 31

2,1,3: (10 + 5 + 3) + (10 + 5) + 10 = 43

2,3,1: (10 + 3 + 5) + (10 + 3) + 10 = 41

3,1,2: (3 + 5 + 10) + (3 + 5) + 3 = 29

3,2,1: (3 + 10 + 5) + (3 + 10) + 3 = 34

The best order is 3,1,2.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 191 / 194

Algorithm Design Strategies Greedy Algorithms

Example

Example n = 3; m1 = 5, m2 = 10, m3 = 3.

There are 3! = 6 possible orders.

1,2,3: (5 + 10 + 3) + (5 + 10) + 5 = 38

1,3,2: (5 + 3 + 10) + (5 + 3) + 5 = 31

2,1,3: (10 + 5 + 3) + (10 + 5) + 10 = 43

2,3,1: (10 + 3 + 5) + (10 + 3) + 10 = 41

3,1,2: (3 + 5 + 10) + (3 + 5) + 3 = 29

3,2,1: (3 + 10 + 5) + (3 + 10) + 3 = 34

The best order is 3,1,2.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 191 / 194

Algorithm Design Strategies Greedy Algorithms

Example

Example n = 3; m1 = 5, m2 = 10, m3 = 3.

There are 3! = 6 possible orders.

1,2,3: (5 + 10 + 3) + (5 + 10) + 5 = 38

1,3,2: (5 + 3 + 10) + (5 + 3) + 5 = 31

2,1,3: (10 + 5 + 3) + (10 + 5) + 10 = 43

2,3,1: (10 + 3 + 5) + (10 + 3) + 10 = 41

3,1,2: (3 + 5 + 10) + (3 + 5) + 3 = 29

3,2,1: (3 + 10 + 5) + (3 + 10) + 3 = 34

The best order is 3,1,2.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 191 / 194

Algorithm Design Strategies Greedy Algorithms

Example

Example n = 3; m1 = 5, m2 = 10, m3 = 3.

There are 3! = 6 possible orders.

1,2,3: (5 + 10 + 3) + (5 + 10) + 5 = 38

1,3,2: (5 + 3 + 10) + (5 + 3) + 5 = 31

2,1,3: (10 + 5 + 3) + (10 + 5) + 10 = 43

2,3,1: (10 + 3 + 5) + (10 + 3) + 10 = 41

3,1,2: (3 + 5 + 10) + (3 + 5) + 3 = 29

3,2,1: (3 + 10 + 5) + (3 + 10) + 3 = 34

The best order is 3,1,2.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 191 / 194

Algorithm Design Strategies Greedy Algorithms

Example

Example n = 3; m1 = 5, m2 = 10, m3 = 3.

There are 3! = 6 possible orders.

1,2,3: (5 + 10 + 3) + (5 + 10) + 5 = 38

1,3,2: (5 + 3 + 10) + (5 + 3) + 5 = 31

2,1,3: (10 + 5 + 3) + (10 + 5) + 10 = 43

2,3,1: (10 + 3 + 5) + (10 + 3) + 10 = 41

3,1,2: (3 + 5 + 10) + (3 + 5) + 3 = 29

3,2,1: (3 + 10 + 5) + (3 + 10) + 3 = 34

The best order is 3,1,2.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 191 / 194

Algorithm Design Strategies Greedy Algorithms

Example

Example n = 3; m1 = 5, m2 = 10, m3 = 3.

There are 3! = 6 possible orders.

1,2,3: (5 + 10 + 3) + (5 + 10) + 5 = 38

1,3,2: (5 + 3 + 10) + (5 + 3) + 5 = 31

2,1,3: (10 + 5 + 3) + (10 + 5) + 10 = 43

2,3,1: (10 + 3 + 5) + (10 + 3) + 10 = 41

3,1,2: (3 + 5 + 10) + (3 + 5) + 3 = 29

3,2,1: (3 + 10 + 5) + (3 + 10) + 3 = 34

The best order is 3,1,2.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 191 / 194

Algorithm Design Strategies Greedy Algorithms

Example

Example n = 3; m1 = 5, m2 = 10, m3 = 3.

There are 3! = 6 possible orders.

1,2,3: (5 + 10 + 3) + (5 + 10) + 5 = 38

1,3,2: (5 + 3 + 10) + (5 + 3) + 5 = 31

2,1,3: (10 + 5 + 3) + (10 + 5) + 10 = 43

2,3,1: (10 + 3 + 5) + (10 + 3) + 10 = 41

3,1,2: (3 + 5 + 10) + (3 + 5) + 3 = 29

3,2,1: (3 + 10 + 5) + (3 + 10) + 3 = 34

The best order is 3,1,2.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 191 / 194

Algorithm Design Strategies Greedy Algorithms

Example

Example n = 3; m1 = 5, m2 = 10, m3 = 3.

There are 3! = 6 possible orders.

1,2,3: (5 + 10 + 3) + (5 + 10) + 5 = 38

1,3,2: (5 + 3 + 10) + (5 + 3) + 5 = 31

2,1,3: (10 + 5 + 3) + (10 + 5) + 10 = 43

2,3,1: (10 + 3 + 5) + (10 + 3) + 10 = 41

3,1,2: (3 + 5 + 10) + (3 + 5) + 3 = 29

3,2,1: (3 + 10 + 5) + (3 + 10) + 3 = 34

The best order is 3,1,2.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 191 / 194

Algorithm Design Strategies Greedy Algorithms

The Greedy Solution

The Greedy Solution

make tape empty

for i := 1 to n do

grab the next shortest file

put it next on tape.

The algorithm takes the best short term choice without checking to see
whether it is the best long term decision.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 192 / 194

Algorithm Design Strategies Greedy Algorithms

The Greedy Solution

The Greedy Solution

make tape empty

for i := 1 to n do

grab the next shortest file

put it next on tape.

The algorithm takes the best short term choice without checking to see
whether it is the best long term decision.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 192 / 194

Algorithm Design Strategies Greedy Algorithms

The Greedy Solution

The Greedy Solution

make tape empty

for i := 1 to n do

grab the next shortest file

put it next on tape.

The algorithm takes the best short term choice without checking to see
whether it is the best long term decision.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 192 / 194

Algorithm Design Strategies Greedy Algorithms

The Greedy Solution

The Greedy Solution

make tape empty

for i := 1 to n do

grab the next shortest file

put it next on tape.

The algorithm takes the best short term choice without checking to see
whether it is the best long term decision.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 192 / 194

Algorithm Design Strategies Greedy Algorithms

The Greedy Solution

The Greedy Solution

make tape empty

for i := 1 to n do

grab the next shortest file

put it next on tape.

The algorithm takes the best short term choice without checking to see
whether it is the best long term decision.

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 192 / 194

Algorithm Design Strategies Greedy Algorithms

Analysis

Analysis

O(n logn) for sorting

O(n) for the rest

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 193 / 194

Algorithm Design Strategies Greedy Algorithms

Analysis

Analysis

O(n logn) for sorting

O(n) for the rest

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 193 / 194

Algorithm Design Strategies Greedy Algorithms

Analysis

Analysis

O(n logn) for sorting

O(n) for the rest

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 193 / 194

Algorithm Design Strategies Greedy Algorithms

Thank You!

Dr. G.H.J. Lanel AMT 211 2.0 Design and Analysis of Algorithms (General Degree)Semester 1 - 2017 194 / 194

	Mathematics for the Analysis of Algorithms
	Binomial Identities
	Recurrence Relations
	Asymptotic Analysis

	Introduction to Algorithm Design, Validation and Analysis
	Analysis of Algorithms
	Best, Average, and Worst Case Running Times
	Big O, Little o, (Omega), and (Theta) Notations
	Complexity classes

	Time Complexity of Searching and Shorting Algorithms
	Sequential and Binary Search Algorithms
	Sorting Algorithms
	Breadth First and Depth First Search Algorithms

	Algorithm Design Strategies
	Divide and Conquer Techniques
	Dynamic Programming
	Greedy Algorithms

