
AMT 223 1.0 Discrete Mathematics

Dr. G.H.J. Lanel

Semester 2 - 2018

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 1 / 33



Induction and Recursion

Outline

1 Induction and Recursion
Recursive Definitions
Recursive Algorithms
Proof by Mathematical Induction

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 2 / 33



Induction and Recursion Recursive Definitions

Recursion

Sometimes it is difficult to define an object explicitly. However, it may
be easy to define this object in terms of itself. This process is called
recursion. (Rosen 2012, 7th ed. p. 344)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 3 / 33



Induction and Recursion Recursive Definitions

Recursive Definitions-ctd

A recursive definition of a function defines values of the functions for
some inputs in terms of the values of the same function for other
inputs. For example, the factorial function n! is defined by the rules

0! = 1. and (n + 1)! = (n + 1)n!.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 4 / 33



Induction and Recursion Recursive Definitions

Recursive Definitions-ctd

A recursive definition of a function defines values of the functions for
some inputs in terms of the values of the same function for other
inputs. For example, the factorial function n! is defined by the rules

0! = 1. and (n + 1)! = (n + 1)n!.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 4 / 33



Induction and Recursion Recursive Definitions

A recursive (or inductive) definition of an object X consists of two
parts.

The first part describes a few of the pieces of X , usually one,
sometimes two or three, occasionally more, and on rare
occasions, none. This part is called the base case of the definition.

The second part of a recursive definition describes how new
pieces are determined by other pieces already defined; this part is
called the inductive (or recursive) part of the definition.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 5 / 33



Induction and Recursion Recursive Definitions

A recursive (or inductive) definition of an object X consists of two
parts.

The first part describes a few of the pieces of X , usually one,
sometimes two or three, occasionally more, and on rare
occasions, none. This part is called the base case of the definition.

The second part of a recursive definition describes how new
pieces are determined by other pieces already defined; this part is
called the inductive (or recursive) part of the definition.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 5 / 33



Induction and Recursion Recursive Definitions

A recursive (or inductive) definition of an object X consists of two
parts.

The first part describes a few of the pieces of X , usually one,
sometimes two or three, occasionally more, and on rare
occasions, none. This part is called the base case of the definition.

The second part of a recursive definition describes how new
pieces are determined by other pieces already defined; this part is
called the inductive (or recursive) part of the definition.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 5 / 33



Induction and Recursion Recursive Definitions

Example

A sequence of natural numbers that arises again and again in
discrete mathematics (and, apparently, in nature as well) was
defined (recursively) by an Italian mathematician in the thirteenth
century.

This sequence is usually denoted f0, f1, f2, ... and is known as the
Fibonacci sequence.

We do not define the sequence by giving an explicit formula for the
nth term of the sequence.

Instead, we define {fn} by stating explicitly what the first two terms
in the sequence are, and then giving a formula which shows how
each of the remaining terms is determined by terms that appear
earlier in the sequence (the recursive part of the definition).

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 6 / 33



Induction and Recursion Recursive Definitions

Example

A sequence of natural numbers that arises again and again in
discrete mathematics (and, apparently, in nature as well) was
defined (recursively) by an Italian mathematician in the thirteenth
century.

This sequence is usually denoted f0, f1, f2, ... and is known as the
Fibonacci sequence.

We do not define the sequence by giving an explicit formula for the
nth term of the sequence.

Instead, we define {fn} by stating explicitly what the first two terms
in the sequence are, and then giving a formula which shows how
each of the remaining terms is determined by terms that appear
earlier in the sequence (the recursive part of the definition).

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 6 / 33



Induction and Recursion Recursive Definitions

Example

A sequence of natural numbers that arises again and again in
discrete mathematics (and, apparently, in nature as well) was
defined (recursively) by an Italian mathematician in the thirteenth
century.

This sequence is usually denoted f0, f1, f2, ... and is known as the
Fibonacci sequence.

We do not define the sequence by giving an explicit formula for the
nth term of the sequence.

Instead, we define {fn} by stating explicitly what the first two terms
in the sequence are, and then giving a formula which shows how
each of the remaining terms is determined by terms that appear
earlier in the sequence (the recursive part of the definition).

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 6 / 33



Induction and Recursion Recursive Definitions

Example

A sequence of natural numbers that arises again and again in
discrete mathematics (and, apparently, in nature as well) was
defined (recursively) by an Italian mathematician in the thirteenth
century.

This sequence is usually denoted f0, f1, f2, ... and is known as the
Fibonacci sequence.

We do not define the sequence by giving an explicit formula for the
nth term of the sequence.

Instead, we define {fn} by stating explicitly what the first two terms
in the sequence are, and then giving a formula which shows how
each of the remaining terms is determined by terms that appear
earlier in the sequence (the recursive part of the definition).

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 6 / 33



Induction and Recursion Recursive Definitions

Specifically, we set

Base case: f0 = 1, f1 = 1,

Recursive part: fn = fn−1 + fn−2, for all n ≥ 2

Note how this definition in fact determines the entire sequence in
a definite and unambiguous way.

The base case tells us what f0 and f1 are.

What about f2?

The inductive part of the definition tells us that f2 = f1 + f0

Since we already know f1 and f0, we can compute f2, namely
f2 = 1 + 1 = 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 7 / 33



Induction and Recursion Recursive Definitions

Specifically, we set

Base case: f0 = 1, f1 = 1,

Recursive part: fn = fn−1 + fn−2, for all n ≥ 2

Note how this definition in fact determines the entire sequence in
a definite and unambiguous way.

The base case tells us what f0 and f1 are.

What about f2?

The inductive part of the definition tells us that f2 = f1 + f0

Since we already know f1 and f0, we can compute f2, namely
f2 = 1 + 1 = 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 7 / 33



Induction and Recursion Recursive Definitions

Specifically, we set

Base case: f0 = 1, f1 = 1,

Recursive part: fn = fn−1 + fn−2, for all n ≥ 2

Note how this definition in fact determines the entire sequence in
a definite and unambiguous way.

The base case tells us what f0 and f1 are.

What about f2?

The inductive part of the definition tells us that f2 = f1 + f0

Since we already know f1 and f0, we can compute f2, namely
f2 = 1 + 1 = 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 7 / 33



Induction and Recursion Recursive Definitions

Specifically, we set

Base case: f0 = 1, f1 = 1,

Recursive part: fn = fn−1 + fn−2, for all n ≥ 2

Note how this definition in fact determines the entire sequence in
a definite and unambiguous way.

The base case tells us what f0 and f1 are.

What about f2?

The inductive part of the definition tells us that f2 = f1 + f0

Since we already know f1 and f0, we can compute f2, namely
f2 = 1 + 1 = 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 7 / 33



Induction and Recursion Recursive Definitions

Specifically, we set

Base case: f0 = 1, f1 = 1,

Recursive part: fn = fn−1 + fn−2, for all n ≥ 2

Note how this definition in fact determines the entire sequence in
a definite and unambiguous way.

The base case tells us what f0 and f1 are.

What about f2?

The inductive part of the definition tells us that f2 = f1 + f0

Since we already know f1 and f0, we can compute f2, namely
f2 = 1 + 1 = 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 7 / 33



Induction and Recursion Recursive Definitions

Specifically, we set

Base case: f0 = 1, f1 = 1,

Recursive part: fn = fn−1 + fn−2, for all n ≥ 2

Note how this definition in fact determines the entire sequence in
a definite and unambiguous way.

The base case tells us what f0 and f1 are.

What about f2?

The inductive part of the definition tells us that f2 = f1 + f0

Since we already know f1 and f0, we can compute f2, namely
f2 = 1 + 1 = 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 7 / 33



Induction and Recursion Recursive Definitions

Specifically, we set

Base case: f0 = 1, f1 = 1,

Recursive part: fn = fn−1 + fn−2, for all n ≥ 2

Note how this definition in fact determines the entire sequence in
a definite and unambiguous way.

The base case tells us what f0 and f1 are.

What about f2?

The inductive part of the definition tells us that f2 = f1 + f0

Since we already know f1 and f0, we can compute f2, namely
f2 = 1 + 1 = 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 7 / 33



Induction and Recursion Recursive Definitions

Specifically, we set

Base case: f0 = 1, f1 = 1,

Recursive part: fn = fn−1 + fn−2, for all n ≥ 2

Note how this definition in fact determines the entire sequence in
a definite and unambiguous way.

The base case tells us what f0 and f1 are.

What about f2?

The inductive part of the definition tells us that f2 = f1 + f0

Since we already know f1 and f0, we can compute f2, namely
f2 = 1 + 1 = 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 7 / 33



Induction and Recursion Recursive Definitions

What about f3?

By definition, f3 = f2 + f1 ; but since we know f2 because of the
calculation we just finished, and since we know f1 from the base
case, we can compute that f3 = 2 + 1 = 3.

Obviously, we can continue in this way as long as we wish. finding
successively that

f4 = 3 + 2 = 5, f5 = 5 + 3 = 8, f6 = 13, f7 = 21, f8 = 34, and so on.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 8 / 33



Induction and Recursion Recursive Definitions

What about f3?

By definition, f3 = f2 + f1 ; but since we know f2 because of the
calculation we just finished, and since we know f1 from the base
case, we can compute that f3 = 2 + 1 = 3.

Obviously, we can continue in this way as long as we wish. finding
successively that

f4 = 3 + 2 = 5, f5 = 5 + 3 = 8, f6 = 13, f7 = 21, f8 = 34, and so on.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 8 / 33



Induction and Recursion Recursive Definitions

What about f3?

By definition, f3 = f2 + f1 ; but since we know f2 because of the
calculation we just finished, and since we know f1 from the base
case, we can compute that f3 = 2 + 1 = 3.

Obviously, we can continue in this way as long as we wish. finding
successively that

f4 = 3 + 2 = 5, f5 = 5 + 3 = 8, f6 = 13, f7 = 21, f8 = 34, and so on.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 8 / 33



Induction and Recursion Recursive Definitions

Algorithm: Generating the Fibonacci sequence.

procedure iterative fibonacci(n : natural number)

This algorithm computes and stores as fo, fi , .., fn the first n + 1 terms of
the Fibonacci sequence

f0 ← 1

f1 ← 1

for i ← 2 to n do

fi ← fi−1 + fi−2

return(fn)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 9 / 33



Induction and Recursion Recursive Definitions

Algorithm: Generating the Fibonacci sequence.

procedure iterative fibonacci(n : natural number)

This algorithm computes and stores as fo, fi , .., fn the first n + 1 terms of
the Fibonacci sequence

f0 ← 1

f1 ← 1

for i ← 2 to n do

fi ← fi−1 + fi−2

return(fn)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 9 / 33



Induction and Recursion Recursive Definitions

Algorithm: Generating the Fibonacci sequence.

procedure iterative fibonacci(n : natural number)

This algorithm computes and stores as fo, fi , .., fn the first n + 1 terms of
the Fibonacci sequence

f0 ← 1

f1 ← 1

for i ← 2 to n do

fi ← fi−1 + fi−2

return(fn)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 9 / 33



Induction and Recursion Recursive Definitions

Algorithm: Generating the Fibonacci sequence.

procedure iterative fibonacci(n : natural number)

This algorithm computes and stores as fo, fi , .., fn the first n + 1 terms of
the Fibonacci sequence

f0 ← 1

f1 ← 1

for i ← 2 to n do

fi ← fi−1 + fi−2

return(fn)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 9 / 33



Induction and Recursion Recursive Definitions

Algorithm: Generating the Fibonacci sequence.

procedure iterative fibonacci(n : natural number)

This algorithm computes and stores as fo, fi , .., fn the first n + 1 terms of
the Fibonacci sequence

f0 ← 1

f1 ← 1

for i ← 2 to n do

fi ← fi−1 + fi−2

return(fn)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 9 / 33



Induction and Recursion Recursive Definitions

Algorithm: Generating the Fibonacci sequence.

procedure iterative fibonacci(n : natural number)

This algorithm computes and stores as fo, fi , .., fn the first n + 1 terms of
the Fibonacci sequence

f0 ← 1

f1 ← 1

for i ← 2 to n do

fi ← fi−1 + fi−2

return(fn)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 9 / 33



Induction and Recursion Recursive Definitions

Algorithm: Generating the Fibonacci sequence.

procedure iterative fibonacci(n : natural number)

This algorithm computes and stores as fo, fi , .., fn the first n + 1 terms of
the Fibonacci sequence

f0 ← 1

f1 ← 1

for i ← 2 to n do

fi ← fi−1 + fi−2

return(fn)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 9 / 33



Induction and Recursion Recursive Definitions

Algorithm: Generating the Fibonacci sequence.

procedure iterative fibonacci(n : natural number)

This algorithm computes and stores as fo, fi , .., fn the first n + 1 terms of
the Fibonacci sequence

f0 ← 1

f1 ← 1

for i ← 2 to n do

fi ← fi−1 + fi−2

return(fn)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 9 / 33



Induction and Recursion Recursive Definitions

Well-Formed Formulas

An important use of recursive definitions in discrete mathematics
and computer science is for defining sets of strings.

In a programming language, for example, certain strings of
symbols (letters, digits, punctuation marks, etc.) are valid variable
names, expressions, statements, or programs, while others are
not.

Rules of syntax determine which strings are allowed.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 10 / 33



Induction and Recursion Recursive Definitions

Well-Formed Formulas

An important use of recursive definitions in discrete mathematics
and computer science is for defining sets of strings.

In a programming language, for example, certain strings of
symbols (letters, digits, punctuation marks, etc.) are valid variable
names, expressions, statements, or programs, while others are
not.

Rules of syntax determine which strings are allowed.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 10 / 33



Induction and Recursion Recursive Definitions

Well-Formed Formulas

An important use of recursive definitions in discrete mathematics
and computer science is for defining sets of strings.

In a programming language, for example, certain strings of
symbols (letters, digits, punctuation marks, etc.) are valid variable
names, expressions, statements, or programs, while others are
not.

Rules of syntax determine which strings are allowed.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 10 / 33



Induction and Recursion Recursive Definitions

Well-Formed Formulas

An important use of recursive definitions in discrete mathematics
and computer science is for defining sets of strings.

In a programming language, for example, certain strings of
symbols (letters, digits, punctuation marks, etc.) are valid variable
names, expressions, statements, or programs, while others are
not.

Rules of syntax determine which strings are allowed.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 10 / 33



Induction and Recursion Recursive Definitions

In most cases, rules of syntax can be described recursively.

It is satisfying conceptually to give recursive definitions in this
context.

Furthermore, such definitions make it easier to write compilers to
recognize strings that are valid programs in high-level
programming languages and translate them into
machine-language programs.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 11 / 33



Induction and Recursion Recursive Definitions

In most cases, rules of syntax can be described recursively.

It is satisfying conceptually to give recursive definitions in this
context.

Furthermore, such definitions make it easier to write compilers to
recognize strings that are valid programs in high-level
programming languages and translate them into
machine-language programs.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 11 / 33



Induction and Recursion Recursive Definitions

In most cases, rules of syntax can be described recursively.

It is satisfying conceptually to give recursive definitions in this
context.

Furthermore, such definitions make it easier to write compilers to
recognize strings that are valid programs in high-level
programming languages and translate them into
machine-language programs.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 11 / 33



Induction and Recursion Recursive Definitions

This is an example that occur in most high-level programming
languages.

Example.

Suppose that a variable name is allowed to be any string of one or
more characters, each of which is either a letter or a digit, the first of
which must be a letter. We can describe the set V of all variable
names as follows.

Base case:
If x is a letter, then x is a variable name.

Recursive part:
If α is a variable name and x is a letter or a digit, then αx is also a
variable name.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 12 / 33



Induction and Recursion Recursive Definitions

This is an example that occur in most high-level programming
languages.

Example.

Suppose that a variable name is allowed to be any string of one or
more characters, each of which is either a letter or a digit, the first of
which must be a letter. We can describe the set V of all variable
names as follows.

Base case:
If x is a letter, then x is a variable name.

Recursive part:
If α is a variable name and x is a letter or a digit, then αx is also a
variable name.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 12 / 33



Induction and Recursion Recursive Definitions

This is an example that occur in most high-level programming
languages.

Example.

Suppose that a variable name is allowed to be any string of one or
more characters, each of which is either a letter or a digit, the first of
which must be a letter. We can describe the set V of all variable
names as follows.

Base case:
If x is a letter, then x is a variable name.

Recursive part:
If α is a variable name and x is a letter or a digit, then αx is also a
variable name.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 12 / 33



Induction and Recursion Recursive Definitions

This is an example that occur in most high-level programming
languages.

Example.

Suppose that a variable name is allowed to be any string of one or
more characters, each of which is either a letter or a digit, the first of
which must be a letter. We can describe the set V of all variable
names as follows.

Base case:
If x is a letter, then x is a variable name.

Recursive part:
If α is a variable name and x is a letter or a digit, then αx is also a
variable name.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 12 / 33



Induction and Recursion Recursive Definitions

This is an example that occur in most high-level programming
languages.

Example.

Suppose that a variable name is allowed to be any string of one or
more characters, each of which is either a letter or a digit, the first of
which must be a letter. We can describe the set V of all variable
names as follows.

Base case:
If x is a letter, then x is a variable name.

Recursive part:
If α is a variable name and x is a letter or a digit, then αx is also a
variable name.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 12 / 33



Induction and Recursion Recursive Definitions

The first statement is the base case, and from this we get the valid
variable names of length 1, such as W or M.

The second statement is the inductive part of the definition.

It tells us how to construct valid variable names from other valid
variable names.

Specifically, it tells us that we can take any valid variable name
and concatenate onto the end of it any letter or digit.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 13 / 33



Induction and Recursion Recursive Definitions

The first statement is the base case, and from this we get the valid
variable names of length 1, such as W or M.

The second statement is the inductive part of the definition.

It tells us how to construct valid variable names from other valid
variable names.

Specifically, it tells us that we can take any valid variable name
and concatenate onto the end of it any letter or digit.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 13 / 33



Induction and Recursion Recursive Definitions

The first statement is the base case, and from this we get the valid
variable names of length 1, such as W or M.

The second statement is the inductive part of the definition.

It tells us how to construct valid variable names from other valid
variable names.

Specifically, it tells us that we can take any valid variable name
and concatenate onto the end of it any letter or digit.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 13 / 33



Induction and Recursion Recursive Definitions

The first statement is the base case, and from this we get the valid
variable names of length 1, such as W or M.

The second statement is the inductive part of the definition.

It tells us how to construct valid variable names from other valid
variable names.

Specifically, it tells us that we can take any valid variable name
and concatenate onto the end of it any letter or digit.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 13 / 33



Induction and Recursion Recursive Definitions

For example, since W is a valid variable name, so are W8 and
WE .

Then since W8 is a valid variable name, so is W8R.

Our recursive definition tells us not only that certain elements are
in the set we are defining, but also that the only elements in the
set are the ones that are forced to be there by the definition, in
other words, the objects that can be built up according to the rules
given in the definition.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 14 / 33



Induction and Recursion Recursive Definitions

For example, since W is a valid variable name, so are W8 and
WE .

Then since W8 is a valid variable name, so is W8R.

Our recursive definition tells us not only that certain elements are
in the set we are defining, but also that the only elements in the
set are the ones that are forced to be there by the definition, in
other words, the objects that can be built up according to the rules
given in the definition.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 14 / 33



Induction and Recursion Recursive Definitions

For example, since W is a valid variable name, so are W8 and
WE .

Then since W8 is a valid variable name, so is W8R.

Our recursive definition tells us not only that certain elements are
in the set we are defining, but also that the only elements in the
set are the ones that are forced to be there by the definition, in
other words, the objects that can be built up according to the rules
given in the definition.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 14 / 33



Induction and Recursion Recursive Algorithms

Recursive Algorithms

A recursive algorithm is an algorithm which calls itself with
”smaller (or simpler)” input values, and which obtains the result for
the current input by applying simple operations to the returned
value for the smaller (or simpler) input.

More generally if a problem can be solved utilizing solutions to
smaller versions of the same problem, and the smaller versions
reduce to easily solvable cases, then one can use a recursive
algorithm to solve that problem.

For example, the elements of a recursively defined set, or the
value of a recursively defined function can be obtained by a
recursive algorithm.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 15 / 33



Induction and Recursion Recursive Algorithms

Recursive Algorithms

A recursive algorithm is an algorithm which calls itself with
”smaller (or simpler)” input values, and which obtains the result for
the current input by applying simple operations to the returned
value for the smaller (or simpler) input.

More generally if a problem can be solved utilizing solutions to
smaller versions of the same problem, and the smaller versions
reduce to easily solvable cases, then one can use a recursive
algorithm to solve that problem.

For example, the elements of a recursively defined set, or the
value of a recursively defined function can be obtained by a
recursive algorithm.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 15 / 33



Induction and Recursion Recursive Algorithms

Recursive Algorithms

A recursive algorithm is an algorithm which calls itself with
”smaller (or simpler)” input values, and which obtains the result for
the current input by applying simple operations to the returned
value for the smaller (or simpler) input.

More generally if a problem can be solved utilizing solutions to
smaller versions of the same problem, and the smaller versions
reduce to easily solvable cases, then one can use a recursive
algorithm to solve that problem.

For example, the elements of a recursively defined set, or the
value of a recursively defined function can be obtained by a
recursive algorithm.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 15 / 33



Induction and Recursion Recursive Algorithms

Recursive Algorithms-ctd

Example 1: Algorithm for finding the k -th even natural number Note
here that this can be solved very easily by simply outputting 2 ∗ (k − 1)
for a given k.

The purpose here, however, is to illustrate the basic idea of recursion
rather than solving the problem.

Algorithm 1: Even (positive integer k )

Input: k , a positive integer

Output: k -th even natural number (the first even being 0)

Algorithm: if k = 1, then return 0; else return Even (k − 1) ∗ 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 16 / 33



Induction and Recursion Recursive Algorithms

Recursive Algorithms-ctd

Example 1: Algorithm for finding the k -th even natural number Note
here that this can be solved very easily by simply outputting 2 ∗ (k − 1)
for a given k.

The purpose here, however, is to illustrate the basic idea of recursion
rather than solving the problem.

Algorithm 1: Even (positive integer k )

Input: k , a positive integer

Output: k -th even natural number (the first even being 0)

Algorithm: if k = 1, then return 0; else return Even (k − 1) ∗ 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 16 / 33



Induction and Recursion Recursive Algorithms

Recursive Algorithms-ctd

Example 1: Algorithm for finding the k -th even natural number Note
here that this can be solved very easily by simply outputting 2 ∗ (k − 1)
for a given k.

The purpose here, however, is to illustrate the basic idea of recursion
rather than solving the problem.

Algorithm 1: Even (positive integer k )

Input: k , a positive integer

Output: k -th even natural number (the first even being 0)

Algorithm: if k = 1, then return 0; else return Even (k − 1) ∗ 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 16 / 33



Induction and Recursion Recursive Algorithms

Recursive Algorithms-ctd

Example 1: Algorithm for finding the k -th even natural number Note
here that this can be solved very easily by simply outputting 2 ∗ (k − 1)
for a given k.

The purpose here, however, is to illustrate the basic idea of recursion
rather than solving the problem.

Algorithm 1: Even (positive integer k )

Input: k , a positive integer

Output: k -th even natural number (the first even being 0)

Algorithm: if k = 1, then return 0; else return Even (k − 1) ∗ 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 16 / 33



Induction and Recursion Recursive Algorithms

Recursive Algorithms-ctd

Example 1: Algorithm for finding the k -th even natural number Note
here that this can be solved very easily by simply outputting 2 ∗ (k − 1)
for a given k.

The purpose here, however, is to illustrate the basic idea of recursion
rather than solving the problem.

Algorithm 1: Even (positive integer k )

Input: k , a positive integer

Output: k -th even natural number (the first even being 0)

Algorithm: if k = 1, then return 0; else return Even (k − 1) ∗ 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 16 / 33



Induction and Recursion Recursive Algorithms

Recursive Algorithms-ctd

Example 1: Algorithm for finding the k -th even natural number Note
here that this can be solved very easily by simply outputting 2 ∗ (k − 1)
for a given k.

The purpose here, however, is to illustrate the basic idea of recursion
rather than solving the problem.

Algorithm 1: Even (positive integer k )

Input: k , a positive integer

Output: k -th even natural number (the first even being 0)

Algorithm: if k = 1, then return 0; else return Even (k − 1) ∗ 2.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 16 / 33



Induction and Recursion Recursive Algorithms

The Towers of Hanoi Puzzle

Now we consider an old puzzle called the towers of Hanoi.
Stripped of its mystical problem is as follows.

You (the person working the puzzle) are presented with three tall
pegs sticking up from a solid base.

On one of the pegs stands a tower of n solid disks with holes in
their centers, all of different diameters.

No disk sits on a disk of smaller diameter, so the stack of disks on
the peg looks like a cone, wide at the bottom and narrow at the
top.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 17 / 33



Induction and Recursion Recursive Algorithms

The Towers of Hanoi Puzzle

Now we consider an old puzzle called the towers of Hanoi.
Stripped of its mystical problem is as follows.

You (the person working the puzzle) are presented with three tall
pegs sticking up from a solid base.

On one of the pegs stands a tower of n solid disks with holes in
their centers, all of different diameters.

No disk sits on a disk of smaller diameter, so the stack of disks on
the peg looks like a cone, wide at the bottom and narrow at the
top.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 17 / 33



Induction and Recursion Recursive Algorithms

The Towers of Hanoi Puzzle

Now we consider an old puzzle called the towers of Hanoi.
Stripped of its mystical problem is as follows.

You (the person working the puzzle) are presented with three tall
pegs sticking up from a solid base.

On one of the pegs stands a tower of n solid disks with holes in
their centers, all of different diameters.

No disk sits on a disk of smaller diameter, so the stack of disks on
the peg looks like a cone, wide at the bottom and narrow at the
top.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 17 / 33



Induction and Recursion Recursive Algorithms

The Towers of Hanoi Puzzle

Now we consider an old puzzle called the towers of Hanoi.
Stripped of its mystical problem is as follows.

You (the person working the puzzle) are presented with three tall
pegs sticking up from a solid base.

On one of the pegs stands a tower of n solid disks with holes in
their centers, all of different diameters.

No disk sits on a disk of smaller diameter, so the stack of disks on
the peg looks like a cone, wide at the bottom and narrow at the
top.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 17 / 33



Induction and Recursion Recursive Algorithms

Following figure shows this initial position when n = 5.

We label the pegs A, B, and C, as shown, and we label the disks 1 to
n, from smallest to largest.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 18 / 33



Induction and Recursion Recursive Algorithms

Following figure shows this initial position when n = 5.

We label the pegs A, B, and C, as shown, and we label the disks 1 to
n, from smallest to largest.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 18 / 33



Induction and Recursion Recursive Algorithms

Your task is to move the disks so that the whole stack, which
began on peg A, ends up on peg B.

Two rules must be followed.

First, you can move only one at a time, removing it from the top of
the stack on its current peg and placing it on top of the stack on
some other peg.

Second, a disk may never be placed on top of a smaller disk.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 19 / 33



Induction and Recursion Recursive Algorithms

Your task is to move the disks so that the whole stack, which
began on peg A, ends up on peg B.

Two rules must be followed.

First, you can move only one at a time, removing it from the top of
the stack on its current peg and placing it on top of the stack on
some other peg.

Second, a disk may never be placed on top of a smaller disk.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 19 / 33



Induction and Recursion Recursive Algorithms

Your task is to move the disks so that the whole stack, which
began on peg A, ends up on peg B.

Two rules must be followed.

First, you can move only one at a time, removing it from the top of
the stack on its current peg and placing it on top of the stack on
some other peg.

Second, a disk may never be placed on top of a smaller disk.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 19 / 33



Induction and Recursion Recursive Algorithms

Your task is to move the disks so that the whole stack, which
began on peg A, ends up on peg B.

Two rules must be followed.

First, you can move only one at a time, removing it from the top of
the stack on its current peg and placing it on top of the stack on
some other peg.

Second, a disk may never be placed on top of a smaller disk.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 19 / 33



Induction and Recursion Recursive Algorithms

Your task is to move the disks so that the whole stack, which
began on peg A, ends up on peg B.

Two rules must be followed.

First, you can move only one at a time, removing it from the top of
the stack on its current peg and placing it on top of the stack on
some other peg.

Second, a disk may never be placed on top of a smaller disk.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 19 / 33



Induction and Recursion Recursive Algorithms

The problem is to solve the puzzle:

Find a sequence of moves that will result in the entire stack of n disks
standing on peg B. As a secondary problem, we might ask how many
moves the most efficient algorithm will take to perform this task.

This problem is ideal for illustrating the recursive approach.

All we have to do is reduce the problem to a simpler problem.

Let hanoi(X ,Y ,Z ,n) be the algorithm which, we hope, solve the
problem just stated.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 20 / 33



Induction and Recursion Recursive Algorithms

The problem is to solve the puzzle:

Find a sequence of moves that will result in the entire stack of n disks
standing on peg B. As a secondary problem, we might ask how many
moves the most efficient algorithm will take to perform this task.

This problem is ideal for illustrating the recursive approach.

All we have to do is reduce the problem to a simpler problem.

Let hanoi(X ,Y ,Z ,n) be the algorithm which, we hope, solve the
problem just stated.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 20 / 33



Induction and Recursion Recursive Algorithms

The problem is to solve the puzzle:

Find a sequence of moves that will result in the entire stack of n disks
standing on peg B. As a secondary problem, we might ask how many
moves the most efficient algorithm will take to perform this task.

This problem is ideal for illustrating the recursive approach.

All we have to do is reduce the problem to a simpler problem.

Let hanoi(X ,Y ,Z ,n) be the algorithm which, we hope, solve the
problem just stated.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 20 / 33



Induction and Recursion Recursive Algorithms

The problem is to solve the puzzle:

Find a sequence of moves that will result in the entire stack of n disks
standing on peg B. As a secondary problem, we might ask how many
moves the most efficient algorithm will take to perform this task.

This problem is ideal for illustrating the recursive approach.

All we have to do is reduce the problem to a simpler problem.

Let hanoi(X ,Y ,Z ,n) be the algorithm which, we hope, solve the
problem just stated.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 20 / 33



Induction and Recursion Recursive Algorithms

The problem is to solve the puzzle:

Find a sequence of moves that will result in the entire stack of n disks
standing on peg B. As a secondary problem, we might ask how many
moves the most efficient algorithm will take to perform this task.

This problem is ideal for illustrating the recursive approach.

All we have to do is reduce the problem to a simpler problem.

Let hanoi(X ,Y ,Z ,n) be the algorithm which, we hope, solve the
problem just stated.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 20 / 33



Induction and Recursion Recursive Algorithms

The problem is to solve the puzzle:

Find a sequence of moves that will result in the entire stack of n disks
standing on peg B. As a secondary problem, we might ask how many
moves the most efficient algorithm will take to perform this task.

This problem is ideal for illustrating the recursive approach.

All we have to do is reduce the problem to a simpler problem.

Let hanoi(X ,Y ,Z ,n) be the algorithm which, we hope, solve the
problem just stated.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 20 / 33



Induction and Recursion Recursive Algorithms

We will assume that a solution to the problem consisting of
printing a sequence of statements of the form ”Move disk i from
peg p to peg q.”

If, for example, we call hanoi(A,B,C,2), then we hope to see the
output:

Move disk 1 from peg A to peg C.

Move disk 2 from peg A to peg B.

Move disk 1 from peg C to peg B.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 21 / 33



Induction and Recursion Recursive Algorithms

We will assume that a solution to the problem consisting of
printing a sequence of statements of the form ”Move disk i from
peg p to peg q.”

If, for example, we call hanoi(A,B,C,2), then we hope to see the
output:

Move disk 1 from peg A to peg C.

Move disk 2 from peg A to peg B.

Move disk 1 from peg C to peg B.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 21 / 33



Induction and Recursion Recursive Algorithms

We will assume that a solution to the problem consisting of
printing a sequence of statements of the form ”Move disk i from
peg p to peg q.”

If, for example, we call hanoi(A,B,C,2), then we hope to see the
output:

Move disk 1 from peg A to peg C.

Move disk 2 from peg A to peg B.

Move disk 1 from peg C to peg B.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 21 / 33



Induction and Recursion Recursive Algorithms

We will assume that a solution to the problem consisting of
printing a sequence of statements of the form ”Move disk i from
peg p to peg q.”

If, for example, we call hanoi(A,B,C,2), then we hope to see the
output:

Move disk 1 from peg A to peg C.

Move disk 2 from peg A to peg B.

Move disk 1 from peg C to peg B.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 21 / 33



Induction and Recursion Recursive Algorithms

We will assume that a solution to the problem consisting of
printing a sequence of statements of the form ”Move disk i from
peg p to peg q.”

If, for example, we call hanoi(A,B,C,2), then we hope to see the
output:

Move disk 1 from peg A to peg C.

Move disk 2 from peg A to peg B.

Move disk 1 from peg C to peg B.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 21 / 33



Induction and Recursion Recursive Algorithms

Algorithm:
Recursive solution to the towers of Hanoi puzzle

procedure hanoi(X ,Y ,Z : peg names, n : positive integer)

{this procedure prints out in order the moves needed to transfer n
disks from peg X to peg Y, following the rules of the towers of Hanoi
puzzle; the peg names X, Y, and Z must be A, B, and C, in some order}

if n = 1 then print(”Move disk 1 from peg” X ”to peg” Y”.”)
else
begin
call hanoi(X ,Z ,Y ,n − 1)
print(”Move disk” n ”from peg” X ”to peg” Y”.”)
call hanoi(Z ,Y ,X ,n − 1)
end
return

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 22 / 33



Induction and Recursion Recursive Algorithms

Algorithm:
Recursive solution to the towers of Hanoi puzzle

procedure hanoi(X ,Y ,Z : peg names, n : positive integer)

{this procedure prints out in order the moves needed to transfer n
disks from peg X to peg Y, following the rules of the towers of Hanoi
puzzle; the peg names X, Y, and Z must be A, B, and C, in some order}

if n = 1 then print(”Move disk 1 from peg” X ”to peg” Y”.”)
else
begin
call hanoi(X ,Z ,Y ,n − 1)
print(”Move disk” n ”from peg” X ”to peg” Y”.”)
call hanoi(Z ,Y ,X ,n − 1)
end
return

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 22 / 33



Induction and Recursion Recursive Algorithms

Algorithm:
Recursive solution to the towers of Hanoi puzzle

procedure hanoi(X ,Y ,Z : peg names, n : positive integer)

{this procedure prints out in order the moves needed to transfer n
disks from peg X to peg Y, following the rules of the towers of Hanoi
puzzle; the peg names X, Y, and Z must be A, B, and C, in some order}

if n = 1 then print(”Move disk 1 from peg” X ”to peg” Y”.”)
else
begin
call hanoi(X ,Z ,Y ,n − 1)
print(”Move disk” n ”from peg” X ”to peg” Y”.”)
call hanoi(Z ,Y ,X ,n − 1)
end
return

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 22 / 33



Induction and Recursion Recursive Algorithms

Algorithm:
Recursive solution to the towers of Hanoi puzzle

procedure hanoi(X ,Y ,Z : peg names, n : positive integer)

{this procedure prints out in order the moves needed to transfer n
disks from peg X to peg Y, following the rules of the towers of Hanoi
puzzle; the peg names X, Y, and Z must be A, B, and C, in some order}

if n = 1 then print(”Move disk 1 from peg” X ”to peg” Y”.”)
else
begin
call hanoi(X ,Z ,Y ,n − 1)
print(”Move disk” n ”from peg” X ”to peg” Y”.”)
call hanoi(Z ,Y ,X ,n − 1)
end
return

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 22 / 33



Induction and Recursion Recursive Algorithms

Algorithm:
Recursive solution to the towers of Hanoi puzzle

procedure hanoi(X ,Y ,Z : peg names, n : positive integer)

{this procedure prints out in order the moves needed to transfer n
disks from peg X to peg Y, following the rules of the towers of Hanoi
puzzle; the peg names X, Y, and Z must be A, B, and C, in some order}

if n = 1 then print(”Move disk 1 from peg” X ”to peg” Y”.”)
else
begin
call hanoi(X ,Z ,Y ,n − 1)
print(”Move disk” n ”from peg” X ”to peg” Y”.”)
call hanoi(Z ,Y ,X ,n − 1)
end
return

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 22 / 33



Induction and Recursion Recursive Algorithms

Algorithm:
Recursive solution to the towers of Hanoi puzzle

procedure hanoi(X ,Y ,Z : peg names, n : positive integer)

{this procedure prints out in order the moves needed to transfer n
disks from peg X to peg Y, following the rules of the towers of Hanoi
puzzle; the peg names X, Y, and Z must be A, B, and C, in some order}

if n = 1 then print(”Move disk 1 from peg” X ”to peg” Y”.”)
else
begin
call hanoi(X ,Z ,Y ,n − 1)
print(”Move disk” n ”from peg” X ”to peg” Y”.”)
call hanoi(Z ,Y ,X ,n − 1)
end
return

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 22 / 33



Induction and Recursion Recursive Algorithms

Algorithm:
Recursive solution to the towers of Hanoi puzzle

procedure hanoi(X ,Y ,Z : peg names, n : positive integer)

{this procedure prints out in order the moves needed to transfer n
disks from peg X to peg Y, following the rules of the towers of Hanoi
puzzle; the peg names X, Y, and Z must be A, B, and C, in some order}

if n = 1 then print(”Move disk 1 from peg” X ”to peg” Y”.”)
else
begin
call hanoi(X ,Z ,Y ,n − 1)
print(”Move disk” n ”from peg” X ”to peg” Y”.”)
call hanoi(Z ,Y ,X ,n − 1)
end
return

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 22 / 33



Induction and Recursion Recursive Algorithms

Algorithm:
Recursive solution to the towers of Hanoi puzzle

procedure hanoi(X ,Y ,Z : peg names, n : positive integer)

{this procedure prints out in order the moves needed to transfer n
disks from peg X to peg Y, following the rules of the towers of Hanoi
puzzle; the peg names X, Y, and Z must be A, B, and C, in some order}

if n = 1 then print(”Move disk 1 from peg” X ”to peg” Y”.”)
else
begin
call hanoi(X ,Z ,Y ,n − 1)
print(”Move disk” n ”from peg” X ”to peg” Y”.”)
call hanoi(Z ,Y ,X ,n − 1)
end
return

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 22 / 33



Induction and Recursion Recursive Algorithms

Algorithm:
Recursive solution to the towers of Hanoi puzzle

procedure hanoi(X ,Y ,Z : peg names, n : positive integer)

{this procedure prints out in order the moves needed to transfer n
disks from peg X to peg Y, following the rules of the towers of Hanoi
puzzle; the peg names X, Y, and Z must be A, B, and C, in some order}

if n = 1 then print(”Move disk 1 from peg” X ”to peg” Y”.”)
else
begin
call hanoi(X ,Z ,Y ,n − 1)
print(”Move disk” n ”from peg” X ”to peg” Y”.”)
call hanoi(Z ,Y ,X ,n − 1)
end
return

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 22 / 33



Induction and Recursion Recursive Algorithms

Algorithm:
Recursive solution to the towers of Hanoi puzzle

procedure hanoi(X ,Y ,Z : peg names, n : positive integer)

{this procedure prints out in order the moves needed to transfer n
disks from peg X to peg Y, following the rules of the towers of Hanoi
puzzle; the peg names X, Y, and Z must be A, B, and C, in some order}

if n = 1 then print(”Move disk 1 from peg” X ”to peg” Y”.”)
else
begin
call hanoi(X ,Z ,Y ,n − 1)
print(”Move disk” n ”from peg” X ”to peg” Y”.”)
call hanoi(Z ,Y ,X ,n − 1)
end
return

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 22 / 33



Induction and Recursion Recursive Algorithms

Algorithm:
Recursive solution to the towers of Hanoi puzzle

procedure hanoi(X ,Y ,Z : peg names, n : positive integer)

{this procedure prints out in order the moves needed to transfer n
disks from peg X to peg Y, following the rules of the towers of Hanoi
puzzle; the peg names X, Y, and Z must be A, B, and C, in some order}

if n = 1 then print(”Move disk 1 from peg” X ”to peg” Y”.”)
else
begin
call hanoi(X ,Z ,Y ,n − 1)
print(”Move disk” n ”from peg” X ”to peg” Y”.”)
call hanoi(Z ,Y ,X ,n − 1)
end
return

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 22 / 33



Induction and Recursion Recursive Algorithms

Recursion Versus Iteration

We discussed recursive definitions of functions (or sequences,
which are really just functions) and gave many examples.

It is usually straightforward to take a recursive definition of a
function and turn it into a recursive procedure for computing the
function.

Recall the recursive definition of the Fibonacci sequence, which
we write in functional notation to suit our needs in this example:

f (0) = f (1) = 1 and f (n) = f (n − 1) + f (n − 2), for n ≥ 2

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 23 / 33



Induction and Recursion Recursive Algorithms

Recursion Versus Iteration

We discussed recursive definitions of functions (or sequences,
which are really just functions) and gave many examples.

It is usually straightforward to take a recursive definition of a
function and turn it into a recursive procedure for computing the
function.

Recall the recursive definition of the Fibonacci sequence, which
we write in functional notation to suit our needs in this example:

f (0) = f (1) = 1 and f (n) = f (n − 1) + f (n − 2), for n ≥ 2

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 23 / 33



Induction and Recursion Recursive Algorithms

Recursion Versus Iteration

We discussed recursive definitions of functions (or sequences,
which are really just functions) and gave many examples.

It is usually straightforward to take a recursive definition of a
function and turn it into a recursive procedure for computing the
function.

Recall the recursive definition of the Fibonacci sequence, which
we write in functional notation to suit our needs in this example:

f (0) = f (1) = 1 and f (n) = f (n − 1) + f (n − 2), for n ≥ 2

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 23 / 33



Induction and Recursion Recursive Algorithms

Recursion Versus Iteration

We discussed recursive definitions of functions (or sequences,
which are really just functions) and gave many examples.

It is usually straightforward to take a recursive definition of a
function and turn it into a recursive procedure for computing the
function.

Recall the recursive definition of the Fibonacci sequence, which
we write in functional notation to suit our needs in this example:

f (0) = f (1) = 1 and f (n) = f (n − 1) + f (n − 2), for n ≥ 2

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 23 / 33



Induction and Recursion Recursive Algorithms

Recursion Versus Iteration

We discussed recursive definitions of functions (or sequences,
which are really just functions) and gave many examples.

It is usually straightforward to take a recursive definition of a
function and turn it into a recursive procedure for computing the
function.

Recall the recursive definition of the Fibonacci sequence, which
we write in functional notation to suit our needs in this example:

f (0) = f (1) = 1 and f (n) = f (n − 1) + f (n − 2), for n ≥ 2

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 23 / 33



Induction and Recursion Recursive Algorithms

The recursive procedure for computing f is short and simple.

procedure f (n : natural number)
{this procedure computes the value of f (n) in the Fibonacci sequence,
recursively from the definition}
if n < 2 then return (1) else return(f (n − 1) + f (n − 2))

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 24 / 33



Induction and Recursion Recursive Algorithms

The recursive procedure for computing f is short and simple.

procedure f (n : natural number)
{this procedure computes the value of f (n) in the Fibonacci sequence,
recursively from the definition}
if n < 2 then return (1) else return(f (n − 1) + f (n − 2))

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 24 / 33



Induction and Recursion Recursive Algorithms

Iterative computation of the Fibonacci sequence.

procedure iterative f (n : natural number)
{this procedure computes the value of f (n) in the Fibonacci sequence,
iteratively, using O(1) space}
if n < 2 then return (1)
else
begin
y ← 1 {the last number in the sequence}
x ← 1 {the number in the sequence before y}
for i ← 2 to n do
begin
z ← x + y {the next number in the sequence}
x ← y
y ← z
end
return(z)
end

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 25 / 33



Induction and Recursion Recursive Algorithms

Iterative computation of the Fibonacci sequence.

procedure iterative f (n : natural number)
{this procedure computes the value of f (n) in the Fibonacci sequence,
iteratively, using O(1) space}
if n < 2 then return (1)
else
begin
y ← 1 {the last number in the sequence}
x ← 1 {the number in the sequence before y}
for i ← 2 to n do
begin
z ← x + y {the next number in the sequence}
x ← y
y ← z
end
return(z)
end

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 25 / 33



Induction and Recursion Proof by Mathematical Induction

Proof by Mathematical Induction

Induction is the primary way we prove universal truths about
entities of unbounded size (like natural numbers).

If the size is bounded, then we can do proof by cases.

Induction is also the way we define things about entities of
unbounded size.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 26 / 33



Induction and Recursion Proof by Mathematical Induction

Proof by Mathematical Induction

Induction is the primary way we prove universal truths about
entities of unbounded size (like natural numbers).

If the size is bounded, then we can do proof by cases.

Induction is also the way we define things about entities of
unbounded size.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 26 / 33



Induction and Recursion Proof by Mathematical Induction

Proof by Mathematical Induction

Induction is the primary way we prove universal truths about
entities of unbounded size (like natural numbers).

If the size is bounded, then we can do proof by cases.

Induction is also the way we define things about entities of
unbounded size.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 26 / 33



Induction and Recursion Proof by Mathematical Induction

Principle of Mathematical Induction

Let P(n) be an infinite collection of statements with n ∈ N. Suppose
that

P(1) is true, and
P(k) =⇒ P(k + 1),∀k ∈ N.

Then, P(n) is true ∀n ∈ N.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 27 / 33



Induction and Recursion Proof by Mathematical Induction

When constructing the proof by induction, you need to present the
statement P(n) and then follow three simple steps.

INDUCTION BASE:
check if P(1) is true, i.e. the statement holds for n = 1,

INDUCTION HYPOTHESIS:
assume P(k) is true, i.e. the statement holds for n = k ,

INDUCTION STEP:
show that if P(k) holds, then P(k + 1) also does.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 28 / 33



Induction and Recursion Proof by Mathematical Induction

When constructing the proof by induction, you need to present the
statement P(n) and then follow three simple steps.

INDUCTION BASE:
check if P(1) is true, i.e. the statement holds for n = 1,

INDUCTION HYPOTHESIS:
assume P(k) is true, i.e. the statement holds for n = k ,

INDUCTION STEP:
show that if P(k) holds, then P(k + 1) also does.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 28 / 33



Induction and Recursion Proof by Mathematical Induction

When constructing the proof by induction, you need to present the
statement P(n) and then follow three simple steps.

INDUCTION BASE:
check if P(1) is true, i.e. the statement holds for n = 1,

INDUCTION HYPOTHESIS:
assume P(k) is true, i.e. the statement holds for n = k ,

INDUCTION STEP:
show that if P(k) holds, then P(k + 1) also does.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 28 / 33



Induction and Recursion Proof by Mathematical Induction

When constructing the proof by induction, you need to present the
statement P(n) and then follow three simple steps.

INDUCTION BASE:
check if P(1) is true, i.e. the statement holds for n = 1,

INDUCTION HYPOTHESIS:
assume P(k) is true, i.e. the statement holds for n = k ,

INDUCTION STEP:
show that if P(k) holds, then P(k + 1) also does.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 28 / 33



Induction and Recursion Proof by Mathematical Induction

Dominoes Effect

Induction is often compared to dominoes toppling.

When we push the first domino, all consecutive ones will also fall
(provided each domino is close enough to its neighbour).

Similarly with P(1) being true, it can be shown by induction that
also P(2),P(3),P(4), ... and so on, will be true.

Hence we prove P(n) for infinite n.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 29 / 33



Induction and Recursion Proof by Mathematical Induction

Dominoes Effect

Induction is often compared to dominoes toppling.

When we push the first domino, all consecutive ones will also fall
(provided each domino is close enough to its neighbour).

Similarly with P(1) being true, it can be shown by induction that
also P(2),P(3),P(4), ... and so on, will be true.

Hence we prove P(n) for infinite n.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 29 / 33



Induction and Recursion Proof by Mathematical Induction

Dominoes Effect

Induction is often compared to dominoes toppling.

When we push the first domino, all consecutive ones will also fall
(provided each domino is close enough to its neighbour).

Similarly with P(1) being true, it can be shown by induction that
also P(2),P(3),P(4), ... and so on, will be true.

Hence we prove P(n) for infinite n.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 29 / 33



Induction and Recursion Proof by Mathematical Induction

Dominoes Effect

Induction is often compared to dominoes toppling.

When we push the first domino, all consecutive ones will also fall
(provided each domino is close enough to its neighbour).

Similarly with P(1) being true, it can be shown by induction that
also P(2),P(3),P(4), ... and so on, will be true.

Hence we prove P(n) for infinite n.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 29 / 33



Induction and Recursion Proof by Mathematical Induction

Versions of induction

Principle of Strong Mathematical Induction

Let P(n) be an infinite collection of statements with n, r , k ∈ N and
r ≤ k . Suppose that

P(r) is true, and
P(j) =⇒ P(k + 1), ∀r ≤ j ≤ k .

Then, P(n) is true ∀n ∈ N,n ≥ r

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 30 / 33



Induction and Recursion Proof by Mathematical Induction

Examples

Show that 23n+1 + 5 is always a multiple of 7.

Solution:
The statement P(n) : 23n+1 + 5 is always a multiple of 7

BASE (n=1):
23×1+1 + 5 = 24 + 5 = 16 + 5 = 21 = 7× 3. Then P(1) holds.

INDUCTION HYPOTHESIS:
Assume that P(k) is true, so 23k+1 + 5 is always a multiple of 7, k ∈ N.

INDUCTION STEP:
Now, we want to show that P(k) =⇒ P(k + 1), where
P(k + 1) : 23(k+1) + 1 + 5 = 23k+4 + 5 is a multiple of 7.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 31 / 33



Induction and Recursion Proof by Mathematical Induction

Examples

Show that 23n+1 + 5 is always a multiple of 7.

Solution:
The statement P(n) : 23n+1 + 5 is always a multiple of 7

BASE (n=1):
23×1+1 + 5 = 24 + 5 = 16 + 5 = 21 = 7× 3. Then P(1) holds.

INDUCTION HYPOTHESIS:
Assume that P(k) is true, so 23k+1 + 5 is always a multiple of 7, k ∈ N.

INDUCTION STEP:
Now, we want to show that P(k) =⇒ P(k + 1), where
P(k + 1) : 23(k+1) + 1 + 5 = 23k+4 + 5 is a multiple of 7.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 31 / 33



Induction and Recursion Proof by Mathematical Induction

Examples

Show that 23n+1 + 5 is always a multiple of 7.

Solution:
The statement P(n) : 23n+1 + 5 is always a multiple of 7

BASE (n=1):
23×1+1 + 5 = 24 + 5 = 16 + 5 = 21 = 7× 3. Then P(1) holds.

INDUCTION HYPOTHESIS:
Assume that P(k) is true, so 23k+1 + 5 is always a multiple of 7, k ∈ N.

INDUCTION STEP:
Now, we want to show that P(k) =⇒ P(k + 1), where
P(k + 1) : 23(k+1) + 1 + 5 = 23k+4 + 5 is a multiple of 7.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 31 / 33



Induction and Recursion Proof by Mathematical Induction

Examples

Show that 23n+1 + 5 is always a multiple of 7.

Solution:
The statement P(n) : 23n+1 + 5 is always a multiple of 7

BASE (n=1):
23×1+1 + 5 = 24 + 5 = 16 + 5 = 21 = 7× 3. Then P(1) holds.

INDUCTION HYPOTHESIS:
Assume that P(k) is true, so 23k+1 + 5 is always a multiple of 7, k ∈ N.

INDUCTION STEP:
Now, we want to show that P(k) =⇒ P(k + 1), where
P(k + 1) : 23(k+1) + 1 + 5 = 23k+4 + 5 is a multiple of 7.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 31 / 33



Induction and Recursion Proof by Mathematical Induction

Examples

Show that 23n+1 + 5 is always a multiple of 7.

Solution:
The statement P(n) : 23n+1 + 5 is always a multiple of 7

BASE (n=1):
23×1+1 + 5 = 24 + 5 = 16 + 5 = 21 = 7× 3. Then P(1) holds.

INDUCTION HYPOTHESIS:
Assume that P(k) is true, so 23k+1 + 5 is always a multiple of 7, k ∈ N.

INDUCTION STEP:
Now, we want to show that P(k) =⇒ P(k + 1), where
P(k + 1) : 23(k+1) + 1 + 5 = 23k+4 + 5 is a multiple of 7.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 31 / 33



Induction and Recursion Proof by Mathematical Induction

Example Ctd.
We know from induction hypothesis that 23k+1 + 5 is always a multiple of 7, so
we can write,

23k+1 + 5 = 7× x

for some x ∈ Z

=⇒ (23k+1 + 5)× 23 = 7× x × 23

=⇒ 23k+4 + 40 = 7× x × 8

=⇒ 23k+4 + 5 = 56x − 35

=⇒ 23k+4 + 5 = 7(8x − 5)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 32 / 33



Induction and Recursion Proof by Mathematical Induction

Example Ctd.
We know from induction hypothesis that 23k+1 + 5 is always a multiple of 7, so
we can write,

23k+1 + 5 = 7× x

for some x ∈ Z

=⇒ (23k+1 + 5)× 23 = 7× x × 23

=⇒ 23k+4 + 40 = 7× x × 8

=⇒ 23k+4 + 5 = 56x − 35

=⇒ 23k+4 + 5 = 7(8x − 5)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 32 / 33



Induction and Recursion Proof by Mathematical Induction

Example Ctd.
We know from induction hypothesis that 23k+1 + 5 is always a multiple of 7, so
we can write,

23k+1 + 5 = 7× x

for some x ∈ Z

=⇒ (23k+1 + 5)× 23 = 7× x × 23

=⇒ 23k+4 + 40 = 7× x × 8

=⇒ 23k+4 + 5 = 56x − 35

=⇒ 23k+4 + 5 = 7(8x − 5)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 32 / 33



Induction and Recursion Proof by Mathematical Induction

Example Ctd.
We know from induction hypothesis that 23k+1 + 5 is always a multiple of 7, so
we can write,

23k+1 + 5 = 7× x

for some x ∈ Z

=⇒ (23k+1 + 5)× 23 = 7× x × 23

=⇒ 23k+4 + 40 = 7× x × 8

=⇒ 23k+4 + 5 = 56x − 35

=⇒ 23k+4 + 5 = 7(8x − 5)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 32 / 33



Induction and Recursion Proof by Mathematical Induction

Example Ctd.
We know from induction hypothesis that 23k+1 + 5 is always a multiple of 7, so
we can write,

23k+1 + 5 = 7× x

for some x ∈ Z

=⇒ (23k+1 + 5)× 23 = 7× x × 23

=⇒ 23k+4 + 40 = 7× x × 8

=⇒ 23k+4 + 5 = 56x − 35

=⇒ 23k+4 + 5 = 7(8x − 5)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 32 / 33



Induction and Recursion Proof by Mathematical Induction

Example Ctd.
We know from induction hypothesis that 23k+1 + 5 is always a multiple of 7, so
we can write,

23k+1 + 5 = 7× x

for some x ∈ Z

=⇒ (23k+1 + 5)× 23 = 7× x × 23

=⇒ 23k+4 + 40 = 7× x × 8

=⇒ 23k+4 + 5 = 56x − 35

=⇒ 23k+4 + 5 = 7(8x − 5)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 32 / 33



Induction and Recursion Proof by Mathematical Induction

Example Ctd.
We know from induction hypothesis that 23k+1 + 5 is always a multiple of 7, so
we can write,

23k+1 + 5 = 7× x

for some x ∈ Z

=⇒ (23k+1 + 5)× 23 = 7× x × 23

=⇒ 23k+4 + 40 = 7× x × 8

=⇒ 23k+4 + 5 = 56x − 35

=⇒ 23k+4 + 5 = 7(8x − 5)

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 32 / 33



Induction and Recursion Proof by Mathematical Induction

So 23k+4 + 5 is a multiple by 7 (P(k + 1) holds), provided that P(k) is
true.

We have shown that P(1) holds and if P(k), then P(k + 1) is also true.
Hence by the Principle of Mathematical Induction, it follows that P(n)
holds for all natural n.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 33 / 33



Induction and Recursion Proof by Mathematical Induction

So 23k+4 + 5 is a multiple by 7 (P(k + 1) holds), provided that P(k) is
true.

We have shown that P(1) holds and if P(k), then P(k + 1) is also true.
Hence by the Principle of Mathematical Induction, it follows that P(n)
holds for all natural n.

Dr. G.H.J. Lanel AMT 223 1.0 Discrete Mathematics Semester 2 - 2018 33 / 33


	Induction and Recursion
	Recursive Definitions
	Recursive Algorithms
	Proof by Mathematical Induction


