MA1302 Engineering Mathematics I

Dr. G.H.J. Lanel

Lecture 1-Differentiation

Outline

(1) Derivative

(2) Derivative as a function

- Other notations
- Higher derivatives

3 Differentiation formulas

(4) The mean value theorem
(5) L'Hospital's rule

- Differentiation allows us to find rates of change.
- For example, it allows us to find the rate of change of velocity with respect to time (which is acceleration).
- It also allows us to find the rate of change of x with respect to y, which on a graph of y against x is the gradient of the curve(The slope of the tangent line is equal to the derivative of the function at the marked point).

- There are a number of simple rules which can be used to allow us to differentiate many functions easily.
- If $y=$ some function of x (in other words if y is equal to an expression containing numbers and $x^{\prime} \mathrm{s}$), then the derivative of y (with respect to x) is written $\frac{\mathrm{d} y}{\mathrm{~d} x}$, pronounced "dee y by dee x ".
- This is also known as 'Leibniz Notation'.

There are many ways a question can ask you to differentiate:

- Differentiate the function...
- Find $f^{\prime}(x)$
- Find $\frac{d y}{d x}$
- Calculate the rate of change of...
- Find the derivative of...
- Calculate the gradient of the tangent to the curve

Outline

(1) Derivative

(2) Derivative as a function

- Other notations
- Higher derivatives
(3) Differentiation formulas
(4) The mean value theorem
(5) L'Hospital's rule

We considered the derivative of a function f at a fixed number a :

Here we change our point of view and let the number a vary. If we replace a in equation by a variable x, we obtain

We considered the derivative of a function f at a fixed number a:

$$
\begin{equation*}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \tag{1}
\end{equation*}
$$

We considered the derivative of a function f at a fixed number a:

$$
\begin{equation*}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \tag{1}
\end{equation*}
$$

Here we change our point of view and let the number a vary. If we replace a in equation by a variable x, we obtain

We considered the derivative of a function f at a fixed number a:

$$
\begin{equation*}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \tag{1}
\end{equation*}
$$

Here we change our point of view and let the number a vary. If we replace a in equation by a variable x, we obtain

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{2}
\end{equation*}
$$

- Given any number x for which this limit exists, we assign to x the number $f^{\prime}(x)$.
- Given any number x for which this limit exists, we assign to x the number $f^{\prime}(x)$.
- So we can regard f^{\prime} as a new function, called the derivative of f and defined by equation (2).

The function f^{\prime} is called the derivative of f because it has been

- Given any number x for which this limit exists, we assign to x the number $f^{\prime}(x)$.
- So we can regard f^{\prime} as a new function, called the derivative of f and defined by equation (2).
- We know that the value of f^{\prime} at x, can be interpreted geometrically as the slope of the tangent line to the graph of f at the point $(x, f(x))$.
- Given any number x for which this limit exists, we assign to x the number $f^{\prime}(x)$.
- So we can regard f^{\prime} as a new function, called the derivative of f and defined by equation (2).
- We know that the value of f^{\prime} at x, can be interpreted geometrically as the slope of the tangent line to the graph of f at the point $(x, f(x))$.
- The function f^{\prime} is called the derivative of f because it has been derived from f by the limiting operation in equation (2).
- Given any number x for which this limit exists, we assign to x the number $f^{\prime}(x)$.
- So we can regard f^{\prime} as a new function, called the derivative of f and defined by equation (2).
- We know that the value of f^{\prime} at x, can be interpreted geometrically as the slope of the tangent line to the graph of f at the point $(x, f(x))$.
- The function f^{\prime} is called the derivative of f because it has been derived from f by the limiting operation in equation (2).
- The domain of f^{\prime} is the set $\left\{x \mid f^{\prime}(x)\right.$ exists $\}$ and may be smaller than the domain of f.

Sketch the graph of the derivative f^{\prime}.

(a)

- Tangents at A, B and C are horizontal, so the derivative is 0 there, and the graph of f^{\prime} crosses the x-axis at the points A^{\prime}, B^{\prime} and C^{\prime}. .
positive there.
negative there.

(a)
- Tangents at A, B and C are horizontal, so the derivative is 0 there, and the graph of f^{\prime} crosses the x-axis at the points A^{\prime}, B^{\prime} and $C^{\prime} .$.
- Between A and B the tangents have positive slope, so $f^{\prime}(x)$ is positive there.
negative there

(a)
- Tangents at A, B and C are horizontal, so the derivative is 0 there, and the graph of f^{\prime} crosses the x-axis at the points A^{\prime}, B^{\prime} and $C^{\prime} .$.
- Between A and B the tangents have positive slope, so $f^{\prime}(x)$ is positive there.
- But between B and C the tangents have negative slope, so $f^{\prime}(x)$ is negative there.

(a)

(b)

If we use the traditional notation $y=f(x)$ to indicate that the independent variable is x and the dependent variable is y, ther some common alternative notations for the derivative are as follows:

If we use the traditional notation $y=f(x)$ to indicate that the independent variable is x and the dependent variable is y, then some common alternative notations for the derivative are as follows:

If we use the traditional notation $y=f(x)$ to indicate that the independent variable is x and the dependent variable is y, then some common alternative notations for the derivative are as follows:

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

If we use the traditional notation $y=f(x)$ to indicate that the independent variable is x and the dependent variable is y, then some common alternative notations for the derivative are as follows:

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

The symbols D and $\frac{d}{d x}$ are called differentiable operators because they indicate the operation of differentiation, which is the process of calculating a derivative.

Second derivative

If f is a differentiable function, then its derivative f^{\prime} is also a function, so f^{\prime} may have a derivative of its own, denoted by $\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}$. This new function $f^{\prime \prime}$ is called the second derivative of because it is the derivative of the derivative of f. We write the second derivative of $y=f(x)$ as

Second derivative

If f is a differentiable function, then its derivative f^{\prime} is also a function, so f^{\prime} may have a derivative of its own, denoted by $\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}$. This new function $f^{\prime \prime}$ is called the second derivative of because it is the derivative of the derivative of f. We write the second derivative of $y=f(x)$ as

$$
\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}
$$

Example:

If $f(x)=x^{3}-x$, find an interpret $f^{\prime \prime}(x)$.

Example:

If $f(x)=x^{3}-x$, find an interpret $f^{\prime \prime}(x)$.

Example:

If $f(x)=x^{3}-x$, find an interpret $f^{\prime \prime}(x)$.

Solution:

Example:

If $f(x)=x^{3}-x$, find an interpret $f^{\prime \prime}(x)$.

Solution:

first derivative is $f^{\prime}(x)=3 x^{2}-1$. So the second derivative is;
$f^{\prime \prime}(x)=\left(f^{\prime}\right)^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{\left[3 *(x+h)^{2}-1\right]-\left[3 x^{2}-1\right]}{h}=$ $\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h 3 h^{2}-1-3 x^{2}+1}{h}=\lim _{h \rightarrow 0} \frac{6 x+3 h}{h}=6 x$

Third derivative

Third derivative is the derivative of the second derivative: $f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}$. So $f^{\prime \prime \prime}(x)$ can be interpreted as the slope of the curve $y=f^{\prime \prime}(x)$ or as the rate of change of $f^{\prime \prime}(x)$. If $y=f(x)$, then alternative notations for the third derivative are,

> The process can be continued. The fourth derivative $f^{\prime \prime \prime \prime}$ is usually denoted by $f^{(4)}$. In general, the nth derivative of is denoted by $f^{(n)}$ and is obtained from f by differentiating n times. If $y=f(x)$, we write

Third derivative

Third derivative is the derivative of the second derivative: $f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}$. So $f^{\prime \prime \prime}(x)$ can be interpreted as the slope of the curve $y=f^{\prime \prime}(x)$ or as the rate of change of $f^{\prime \prime}(x)$. If $y=f(x)$, then alternative notations for the third derivative are,

$$
y^{\prime \prime \prime}=f^{\prime \prime \prime}(x)=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}
$$

The process can be continued. The fourth derivative $f^{\prime \prime \prime \prime}$ is usually denoted by $f^{(4)}$. In general, the nth derivative of is denoted by $f^{(n)}$ and is obtained from f by differentiating n times. If $y=f(x)$, we write

$$
y^{(n)}=f^{(n)}(x)=\frac{d^{n}(y)}{d x^{n}}
$$

Example:

If $f(x)=x^{3}-x$, find $f^{\prime \prime \prime}(x)$ and $f^{(4)}(x)$.

Example:

Example:

If $f(x)=x^{3}-x$, find $f^{\prime \prime \prime}(x)$ and $f^{(4)}(x)$.

Outline

(1) Derivative

(2) Derivative as a function

- Other notations
- Higher derivatives
(3) Differentiation formulas
(4) The mean value theorem
(5) L'Hospital's rule
- Derivative of a constant function is zero

$$
\frac{\mathrm{d} c}{\mathrm{~d} x}=0
$$

- Constant multiple rule

$$
\frac{\mathrm{d} c f(x)}{\mathrm{d} x}=c \frac{\mathrm{~d} f(x)}{\mathrm{d} x}
$$

- Power rule

$$
\frac{\mathrm{d} x^{n}}{\mathrm{~d} x}=n x^{n-1}
$$

Example : Differentiate $y=(4 x-3)^{5}$.

Basic standard form is $y=x^{5}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=5 x^{4}$
Here, $(4 x-3)$ replaces the single x. Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=5(4 x-3)^{4} X$ the diff. of the function $(4 x-3)$
$=5(4 x-3)^{4} \times 4=20(4 x-3)^{4}$.
Therefore $\frac{\mathrm{d} y}{\mathrm{~d} x}=20(4 x-3)^{4}$

Exercise 1 : Differentiate

(1) $f(x)=2 x^{3}-4 x^{2}+5 x-3$
(2) $g(x)=\frac{(x-1)(2 x+3)}{A}(A$ is a constant $)$
(3) $y=x^{\frac{3}{2}}-\frac{4}{3} x^{\frac{-3}{4}}$
(4) $y=\left(x+x^{-1}\right)^{4}$

- Sum rule

$$
(f+g)^{\prime}=f^{\prime}+g^{\prime}
$$

- Difference rule
$(f-g)^{\prime}=f^{\prime}-g^{\prime}$
- Product rule $(f . g)^{\prime}=f . g^{\prime}+f^{\prime} g$
- Quotient rule $\left(\frac{f}{g}\right)^{\prime}=\frac{g . f^{\prime}-f . g^{\prime}}{g^{2}}$
- Chain rule
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \mathrm{~d} u$ where $y=f(u)$ and $u=g(x)$
- Exponential functions
- $\frac{\mathrm{d} \mathrm{a}^{x}}{\mathrm{~d} x}=a^{x}(\ln a)$
- $\frac{\mathrm{d} e^{x}}{\mathrm{~d} x}=e^{x}$
- Logarithmic functions
- $\frac{\mathrm{d} \log _{a} x}{\mathrm{~d} x}=\frac{1}{x(\ln a)}$
- $\frac{\mathrm{d} \ln |x|}{\mathrm{d} x}=\frac{1}{x}$

Example : Differentiate $y=e^{3-x}$

$$
\begin{aligned}
y & =e^{3-x} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =e^{3-x}(-1)=-e^{3-x}
\end{aligned}
$$

Example : Differentiate $y=\log _{10}(2 x-1)$.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{(2 x-1) \ln 10} \cdot 2 \\
& =\frac{2}{(2 x-1) \ln 10}
\end{aligned}
$$

Exercise 2 :Differentiate

(1) $f(x)=\left(x^{2}+3 x\right) e^{x}$
(2) $y=\frac{2 x+1}{x^{2}-3 x+5}$
(3) $g(x)=\left(1+x e^{x}\right)\left(1-e^{x}\right)^{-1}$
(4) $Z=\frac{w}{w+\frac{k}{w}}$ where k is a constant.
(5) $y=\left(1+e^{x}\right)\left(x+e^{x}\right)$

Exercise 3 : Differentiate

(1) $f(x)=\ln \frac{1}{x}+\frac{1}{\ln x}$
(2) $y=\log _{3}\left(x e^{x}\right)$
(3) $G(y)=\ln |\cos (\ln x)|$
(4) $y=\ln \ln \ln s$
(6) $F(v)=\frac{\log _{3} 3 v}{1+\log _{5} 5 v}$

- Trigonometric functions.
- $\frac{\mathrm{d} \sin x}{\mathrm{~d} x}=\cos x$
- $\frac{\mathrm{d} \cos x}{\mathrm{~d} x}=-\sin x$
- $\frac{\mathrm{d} \tan x}{\mathrm{~d} x}=\sec ^{2} x$
- $\frac{\mathrm{d} \csc x}{\mathrm{~d} x}=-\csc x \cot x$
- $\frac{\mathrm{d} \sec x}{\mathrm{~d} x}=\sec x \tan x$
- $\frac{\mathrm{d} \cot x}{\mathrm{~d} x}=-\csc ^{2} x \tan x$
- Inverse trigonometric functions
- $\frac{\mathrm{d} \sin ^{-1} x}{\mathrm{~d} x}=\frac{1}{\sqrt{1-x^{2}}}$
- $\frac{\mathrm{d} \cos ^{-1} x}{\mathrm{~d} x}=-\frac{1}{\sqrt{1-x^{2}}}$
- $\frac{\mathrm{d} \tan ^{-1} x}{\mathrm{~d} x}=\frac{1}{1+x^{2}}$
- $\frac{\mathrm{dcsc}^{-1} x}{\mathrm{~d} x}=-\frac{1}{x \sqrt{x^{2}-1}}$
- $\frac{\mathrm{d} \mathrm{sec}^{-1} x}{\mathrm{~d} x}=\frac{1}{x \sqrt{x^{2}-1}}$
- $\frac{\mathrm{d} \cot ^{-1} x}{\mathrm{~d} x}=-\frac{1}{1+x^{2}}$

■ Inverse rule

$$
\left[f^{-1(x)}\right]^{\prime}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

- Parametric differentiation

$$
\text { If } x=h(t) \quad \text { and } \quad y=g(t) \quad \text { then } \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right) /\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)
$$

Example : Differentiate $y=\frac{\sin 3 x}{x+1}$

$$
\begin{aligned}
y & =\frac{\sin 3 x}{x+1} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{3(x+1) \cos 3 x-\sin 3 x .1}{(x+1)^{2}}
\end{aligned}
$$

Example : Differentiate $y=\frac{\ln x}{e^{2 x}}$

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{e^{2 x \frac{1}{x}}-\ln x \cdot 2 e^{2 x}}{e^{4 x}} \\
& =\frac{e^{2 x}\left(\frac{1}{x}-2 \ln x\right)}{e^{4 x}} \\
& =\frac{\frac{1}{x}-2 \ln x}{e^{2 x}}
\end{aligned}
$$

Exercise 4: Differentiate

(1) $f(x)=\sin x \cos x$
(2) $y=\cos \theta(1-\sin \theta)^{-1}$
(3) $g(\theta)=e^{\theta}(\tan \theta-\theta)$
(4) $y=\sqrt{x} \sin x$
(5) $y=t e^{t} \csc t$

Exercise 5: Differentiate

(1) $y=2^{\sin \pi x}$
(2) $f(x)=\sin \sin \sin x$
(3) $y=\sqrt{1+\sqrt{1+x}}$
(4) $g(x)=\cos \left(\frac{1+e^{2 x}}{1-e^{2 x}}\right)$
(5) $q=2^{3^{t^{2}}}$

Exercise 6 :

(1) Find $h^{\prime \prime}(r)$ if $h(r)=\ln \left(\pi r^{3}\right)$
(2) Find $f^{\prime \prime}(2)$ if $f(t)=e^{t} t^{e}$
(3) Find $g^{(100)}(x)$ if $g(x)=\sin 2 x$

Outline

(1) Derivative

(2) Derivative as a function

- Other notations
- Higher derivatives
(3) Differentiation formulas

4 The mean value theorem
(5) L'Hospital's rule

Theorem

The Mean Value Theorem

(1) f is continuous on the closed interval [a,b].

$$
\text { (2) } f \text { is differentiable on the open interval }(a, b) \text {. }
$$

Theorem

The Mean Value Theorem

(1) f is continuous on the closed interval $[a, b]$.

Theorem

The Mean Value Theorem

(1) f is continuous on the closed interval $[a, b]$.
(2) f is differentiable on the open interval (a, b).

Theorem

The Mean Value Theorem

(1) f is continuous on the closed interval $[a, b]$.
(2) f is differentiable on the open interval (a, b).

Theorem

The Mean Value Theorem

(1) f is continuous on the closed interval $[a, b]$.
(2) f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that,

Theorem

The Mean Value Theorem

(1) f is continuous on the closed interval $[a, b]$.
(2) f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that,

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem

The Mean Value Theorem

(1) f is continuous on the closed interval $[a, b]$.
(2) f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that,

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

or, equivalently,

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

To illustrate the Mean Value Theorem with a specific function, let's consider

To illustrate the Mean Value Theorem with a specific function, let's consider

$$
f(x)=x^{3}-x, a=0, b=2
$$

Therefore, by the MVT, there is a number $c \in(0,2)$ such that

To illustrate the Mean Value Theorem with a specific function, let's consider

$$
f(x)=x^{3}-x, a=0, b=2
$$

Since f is a polynomial, it is continuous and differentiable for all x, so it is certainly continuous on $[0,2]$ and differentiable on $(0,2)$.

To illustrate the Mean Value Theorem with a specific function, let's consider

$$
f(x)=x^{3}-x, a=0, b=2
$$

Since f is a polynomial, it is continuous and differentiable for all x, so it is certainly continuous on $[0,2]$ and differentiable on $(0,2)$.

Therefore, by the MVT, there is a number $c \in(0,2)$ such that

To illustrate the Mean Value Theorem with a specific function, let's consider

$$
f(x)=x^{3}-x, a=0, b=2
$$

Since f is a polynomial, it is continuous and differentiable for all x, so it is certainly continuous on $[0,2]$ and differentiable on $(0,2)$.

Therefore, by the MVT, there is a number $c \in(0,2)$ such that

$$
f(2)-f(0)=f^{\prime}(c)(2-0)
$$

Now $f(2)=6, f(0)=0$, and $f^{\prime}(x)=3 x^{2}-1$, so this equation becomes

$$
\begin{aligned}
6 & =\left(3 c^{2}-1\right) 2 \\
& =6 c^{2}-2
\end{aligned}
$$

Now $f(2)=6, f(0)=0$, and $f^{\prime}(x)=3 x^{2}-1$, so this equation becomes

$$
\begin{aligned}
6 & =\left(3 c^{2}-1\right) 2 \\
& =6 c^{2}-2
\end{aligned}
$$

which gives $c^{2}=\frac{4}{3}$, that is $c= \pm \frac{2}{\sqrt{3}}$.

Now $f(2)=6, f(0)=0$, and $f^{\prime}(x)=3 x^{2}-1$, so this equation becomes

$$
\begin{aligned}
6 & =\left(3 c^{2}-1\right) 2 \\
& =6 c^{2}-2
\end{aligned}
$$

which gives $c^{2}=\frac{4}{3}$, that is $c= \pm \frac{2}{\sqrt{3}}$.
But $c \in(0,2)$, so $c=\frac{2}{\sqrt{3}}$.

Following figure illustrates the calculation:

Following figure illustrates the calculation:

The tangent line at this value of c is parallel to the secant line OB.

Theorem
 If $f^{\prime}(x)=0$ for all x in an interval (a, b), then f is constant on (a, b).

Theorem
 If $f^{\prime}(x)=0$ for all x in an interval (a, b), then f is constant on (a, b).

Proof:

Theorem
 If $f^{\prime}(x)=0$ for all x in an interval (a, b), then f is constant on (a, b).

Proof:

Let x_{1} and x_{2} be any two numbers in (a, b) with $x_{1}<x_{2}$.

Theorem
 If $f^{\prime}(x)=0$ for all x in an interval (a, b), then f is constant on (a, b).

Proof:

Let x_{1} and x_{2} be any two numbers in (a, b) with $x_{1}<x_{2}$.
Since f is differentiable on (a, b), it must be differentiable on $\left(x_{1}, x_{2}\right)$ and continuous on $\left[x_{1}, x_{2}\right]$.

```
Theorem
If f}\mp@subsup{f}{}{\prime}(x)=0\mathrm{ for all }x\mathrm{ in an interval (a,b), then f is constant on (a,b).
```


Proof:

Let x_{1} and x_{2} be any two numbers in (a, b) with $x_{1}<x_{2}$.
Since f is differentiable on (a, b), it must be differentiable on $\left(x_{1}, x_{2}\right)$ and continuous on $\left[x_{1}, x_{2}\right]$.

By applying the Mean Value Theorem to f on the interval $\left[x_{1}, x_{2}\right.$], we get a number c such that $x_{1}<c<x_{2}$ and

Theorem

If $f^{\prime}(x)=0$ for all x in an interval (a, b), then f is constant on (a, b).

Proof:

Let x_{1} and x_{2} be any two numbers in (a, b) with $x_{1}<x_{2}$.
Since f is differentiable on (a, b), it must be differentiable on $\left(x_{1}, x_{2}\right)$ and continuous on $\left[x_{1}, x_{2}\right.$].

By applying the Mean Value Theorem to f on the interval $\left[x_{1}, x_{2}\right.$], we get a number c such that $x_{1}<c<x_{2}$ and

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right)
$$

Proof Contd...

Since $f^{\prime}(x)=0$ for all x, we have $f^{\prime}(c)=0$, and so above equation becomes

Therefore, f has the same value at any two numbers x_{1} and x_{2} in (a, b). This means that f is constant on (a, b)

Proof Contd...

Since $f^{\prime}(x)=0$ for all x, we have $f^{\prime}(c)=0$, and so above equation becomes

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=0 \text { or } f\left(x_{2}\right)=f\left(x_{1}\right)
$$

Proof Contd...

Since $f^{\prime}(x)=0$ for all x, we have $f^{\prime}(c)=0$, and so above equation becomes

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=0 \text { or } f\left(x_{2}\right)=f\left(x_{1}\right)
$$

Therefore, f has the same value at any two numbers x_{1} and x_{2} in (a, b). This means that f is constant on (a, b).

Outline

(1) Derivative

(2) Derivative as a function

- Other notations
- Higher derivatives
(3) Differentiation formulas
(4) The mean value theorem
(5) L'Hospital's rule

- Indeterminate form of type 0/0

- Indeterminate form of type $\mathbf{0 / 0}$

Limit of the form

- Indeterminate form of type $\mathbf{0 / 0}$

Limit of the form

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

- Indeterminate form of type $0 / 0$

Limit of the form

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

in which $f(x) \longrightarrow 0$ and $g(x) \longrightarrow 0$ as $x \longrightarrow a$

- Indeterminate form of type $\mathbf{0 / 0}$

Limit of the form

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

in which $f(x) \longrightarrow 0$ and $g(x) \longrightarrow 0$ as $x \longrightarrow a$ is called an indeterminate form of type $0 / 0$

- L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containind $x=a$, excent possible at $x=a$, and that

- L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containing $x=a$, except possible at $x=a$, and that

- L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containing $x=a$, except possible at $x=a$, and that

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

- L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containing $x=a$, except possible at $x=a$, and that

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

Moreover this statement is also true in the case of limits as

- L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containing $x=a$, except possible at $x=a$, and that

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

- L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containing $x=a$, except possible at $x=a$, and that

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Moreover this statement is also true in the case of limits as

- L'Hôpital's Rule for form 0/0

Suppose that f and g are differentiable functions on an open interval containing $x=a$, except possible at $x=a$, and that

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Moreover this statement is also true in the case of limits as
$x \longrightarrow a^{-}, x \longrightarrow a^{+}, x \longrightarrow-\infty$ or as $x \longrightarrow+\infty$

E.g. Find the limit

Using L'Hôpital's rule, and check the result by factoring.

E.g. Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Using L'Hôpital's rule, and check the result by factoring.

E.g. Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Using L'Hôpital's rule, and check the result by factoring. Sol:
E.g. Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Using L'Hôpital's rule, and check the result by factoring. Sol:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\frac{2^{2}-4}{2-2} \quad 0 / 0 \text { form }
$$

E.g. Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Using L'Hôpital's rule, and check the result by factoring.
Sol:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\frac{2^{2}-4}{2-2} \quad 0 / 0 \text { form }
$$

Using L'Hôpital's rule
E.g. Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Using L'Hôpital's rule, and check the result by factoring.
Sol:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\frac{2^{2}-4}{2-2} \quad 0 / 0 \text { form }
$$

Using L'Hôpital's rule

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{\frac{d}{d x}\left(x^{2}-4\right)}{\frac{d}{d x}(x-2)}
$$

E.g. Find the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Using L'Hôpital's rule, and check the result by factoring.
Sol:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\frac{2^{2}-4}{2-2} \quad 0 / 0 \text { form }
$$

Using L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{\frac{d}{d x}\left(x^{2}-4\right)}{\frac{d}{d x}(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{2 x}{1}=4
\end{aligned}
$$

By computation

By computation

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)}
$$

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$
(2) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}$

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$
(2) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}$
(3) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}$

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$
(2) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}$
(3) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}$
(4) $\lim _{x \rightarrow 0^{-}} \frac{\tan 2 x}{x^{2}}$

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$
(2) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}$
(3) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}$
(4) $\lim _{x \rightarrow 0^{-}} \frac{\tan 2 x}{x^{2}}$
(5) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$

By computation

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2)=4
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type $0 / 0$ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$
(2) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cos x}$
(3) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}$
(4) $\lim _{x \rightarrow 0^{-}} \frac{\tan 2 x}{x^{2}}$
(5) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
(6) $\lim _{x \rightarrow+\infty} \frac{x^{-\frac{4}{3}}}{\sin \left(\frac{1}{x}\right)}$

Sol:

Sol:

(1)

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\frac{\sin 0}{0}=\frac{0}{0} \text { form }
$$

Sol:

(1)

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\frac{\sin 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

Sol:

(1)

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\frac{\sin 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sin 2 x)}{\frac{d}{d x}(x)}
$$

Sol:

(1)

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\frac{\sin 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sin 2 x)}{\frac{d}{d x}(x)} \\
& =\lim _{x \rightarrow 0} \frac{2 \cos 2 x}{1}
\end{aligned}
$$

Sol:

(1)

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\frac{\sin 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sin 2 x)}{\frac{d}{d x}(x)} \\
& =\lim _{x \rightarrow 0} \frac{2 \cos 2 x}{1} \\
& =2 \cos (0)=2
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x}=\frac{1-\sin \frac{\pi}{2}}{\cos \pi / 2}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

(2)

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x}=\frac{1-\sin \frac{\pi}{2}}{\cos \pi / 2}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

(2)

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x}=\frac{1-\sin \frac{\pi}{2}}{\cos \pi / 2}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x}=\lim _{x \rightarrow \pi / 2} \frac{\frac{d}{d x}(1-\sin x)}{\frac{d}{d x}(\cos x)}
$$

(2)

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x}=\frac{1-\sin \frac{\pi}{2}}{\cos \pi / 2}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x} & =\lim _{x \rightarrow \pi / 2} \frac{\frac{d}{d x}(1-\sin x)}{\frac{d}{d x}(\cos x)} \\
& =\lim _{x \rightarrow \pi / 2} \frac{-\cos x}{-\sin x}
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x}=\frac{1-\sin \frac{\pi}{2}}{\cos \pi / 2}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x} & =\lim _{x \rightarrow \pi / 2} \frac{\frac{d}{d x}(1-\sin x)}{\frac{d}{d x}(\cos x)} \\
& =\lim _{x \rightarrow \pi / 2} \frac{-\cos x}{-\sin x} \\
& =\frac{\cos \pi / 2}{\sin \pi / 2}
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x}=\frac{1-\sin \frac{\pi}{2}}{\cos \pi / 2}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x} & =\lim _{x \rightarrow \pi / 2} \frac{\frac{d}{d x}(1-\sin x)}{\frac{d}{d x}(\cos x)} \\
& =\lim _{x \rightarrow \pi / 2} \frac{-\cos x}{-\sin x} \\
& =\frac{\cos \pi / 2}{\sin \pi / 2} \\
& =\frac{0}{1}=0
\end{aligned}
$$

(3)

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}=\frac{e^{0}-1}{0}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

(3)

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}=\frac{e^{0}-1}{0}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

(3)

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}=\frac{e^{0}-1}{0}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(e^{x}-1\right)}{\frac{d}{d x}\left(x^{3}\right)}
$$

(3)

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}=\frac{e^{0}-1}{0}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(e^{x}-1\right)}{\frac{d}{d x}\left(x^{3}\right)} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}}{3 x^{2}}
\end{aligned}
$$

(3)

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}}=\frac{e^{0}-1}{0}=\frac{1-1}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(e^{x}-1\right)}{\frac{d}{d x}\left(x^{3}\right)} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}}{3 x^{2}} \\
& =+\infty
\end{aligned}
$$

(4)

$$
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}}=\frac{\tan 0}{0}=\frac{0}{0} \text { form }
$$

(4)

$$
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}}=\frac{\tan 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

(4)

$$
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}}=\frac{\tan 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}}=\lim _{x \rightarrow 0^{-}} \frac{\frac{d}{d x}(\tan x)}{\frac{d}{d x}\left(x^{2}\right)}
$$

(4)

$$
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}}=\frac{\tan 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}} & =\lim _{x \rightarrow 0^{-}} \frac{\frac{d}{d x}(\tan x)}{\frac{d}{d x}\left(x^{2}\right)} \\
& =\lim _{x \rightarrow 0^{-}} \frac{\sec ^{2} x}{2 x}
\end{aligned}
$$

(4)

$$
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}}=\frac{\tan 0}{0}=\frac{0}{0} \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x^{2}} & =\lim _{x \rightarrow 0^{-}} \frac{\frac{d}{d x}(\tan x)}{\frac{d}{d x}\left(x^{2}\right)} \\
& =\lim _{x \rightarrow 0^{-}} \frac{\sec ^{2} x}{2 x} \\
& =-\infty
\end{aligned}
$$

- Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{a(x)}$ in which the numerator has limit ∞ and the

 denominator has the limit ∞ is called an indeterminate form of type- Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

- L'Hôpital's Rule for
- Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

- L'Hôpital's Rule for ∞ / ∞

Suppose f and g are differentiable functions on an open interval

- Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

- L'Hôpital's Rule for ∞ / ∞

Suppose f and g are differentiable functions on an open interval containing $x=a$, except possibly at, $x=a$ and that

- Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

- L'Hôpital's Rule for ∞ / ∞

Suppose f and g are differentiable functions on an open interval containing $x=a$, except possibly at, $x=a$ and that

$$
\lim _{x \rightarrow a} f(x)=\infty \text { and } \lim _{x \rightarrow a} g(x)=\infty
$$

- Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

- L'Hôpital's Rule for ∞ / ∞

Suppose f and g are differentiable functions on an open interval containing $x=a$, except possibly at, $x=a$ and that

$$
\lim _{x \rightarrow a} f(x)=\infty \text { and } \lim _{x \rightarrow a} g(x)=\infty
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

- Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

- L'Hôpital's Rule for ∞ / ∞

Suppose f and g are differentiable functions on an open interval containing $x=a$, except possibly at, $x=a$ and that

$$
\lim _{x \rightarrow a} f(x)=\infty \text { and } \lim _{x \rightarrow a} g(x)=\infty
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

- Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

- L'Hôpital's Rule for ∞ / ∞

Suppose f and g are differentiable functions on an open interval containing $x=a$, except possibly at, $x=a$ and that

$$
\lim _{x \rightarrow a} f(x)=\infty \text { and } \lim _{x \rightarrow a} g(x)=\infty
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Moreover this statement is also true in the case of limits as

- Indeterminate form of type ∞ / ∞

The Limit of a ratio, $\frac{f(x)}{g(x)}$ in which the numerator has limit ∞ and the denominator has the limit ∞ is called an indeterminate form of type ∞ / ∞

- L'Hôpital's Rule for ∞ / ∞

Suppose f and g are differentiable functions on an open interval containing $x=a$, except possibly at, $x=a$ and that

$$
\lim _{x \rightarrow a} f(x)=\infty \text { and } \lim _{x \rightarrow a} g(x)=\infty
$$

If $\lim _{x \rightarrow a}\left[\frac{f^{\prime}(x)}{g^{\prime}(x)}\right]$ exists, or if this limit is $+\infty$ or $-\infty$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Moreover this statement is also true in the case of limits as $x \longrightarrow a^{-}, x \longrightarrow a^{+}, x \longrightarrow-\infty$ or as $x \longrightarrow+\infty$,
E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$
E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$
E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$
(1)

$$
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=\frac{\infty}{e^{\infty}}=\infty / \infty \text { form }
$$

E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$

Sol:
(1)

$$
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=\frac{\infty}{e^{\infty}}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule
E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$

Sol:
(1)

$$
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=\frac{\infty}{e^{\infty}}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=\lim _{x \rightarrow+\infty} \frac{\frac{d}{d x}(x)}{\frac{d}{d x}\left(e^{x}\right)}
$$

E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$

Sol:
(1)

$$
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=\frac{\infty}{e^{\infty}}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}} & =\lim _{x \rightarrow+\infty} \frac{\frac{d}{d x}(x)}{\frac{d}{d x}\left(e^{x}\right)} \\
& =\lim _{x \rightarrow+\infty} \frac{1}{e^{x}}
\end{aligned}
$$

E.g. In each part confirm that the limit is an indeterminate form of type ∞ / ∞ and evaluate it using L'HÔPITAL's rule.
(1) $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}$

Sol:
(1)

$$
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=\frac{\infty}{e^{\infty}}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{x}{e^{x}} & =\lim _{x \rightarrow+\infty} \frac{\frac{d}{d x}(x)}{\frac{d}{d x}\left(e^{x}\right)} \\
& =\lim _{x \rightarrow+\infty} \frac{1}{e^{x}} \\
& =0
\end{aligned}
$$

(2)

(2)

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\frac{\ln (0)}{\csc (0)}=\infty / \infty \text { form }
$$

(2)

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\frac{\ln (0)}{\csc (0)}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

(2)

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\frac{\ln (0)}{\csc (0)}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}(\csc (x))}
$$

(2)

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\frac{\ln (0)}{\csc (0)}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}(\csc (x))} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc (x) \cot (x)}
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\frac{\ln (0)}{\csc (0)}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}(\csc (x))} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc (x) \cot (x)} \\
& =\infty / \infty \text { form }
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=\frac{\ln (0)}{\csc (0)}=\infty / \infty \text { form }
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}(\csc (x))} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc (x) \cot (x)} \\
& =\infty / \infty \text { form }
\end{aligned}
$$

Any additional application of L'Hôpital's rule will yield powers of $\frac{1}{x}$ in the numerator and expressions involving $\csc (x)$ and $\cot (x)$ in the denominator.

Rewriting last expression

Rewriting last expression

$$
\lim _{x \rightarrow 0^{+}}\left(-\frac{\sin x}{x} \tan x\right)=-\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \lim _{x \rightarrow 0^{+}} \tan x
$$

Rewriting last expression

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(-\frac{\sin x}{x} \tan x\right) & =-\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \lim _{x \rightarrow 0^{+}} \tan x \\
& =-(1)(0)=0
\end{aligned}
$$

Rewriting last expression

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(-\frac{\sin x}{x} \tan x\right) & =-\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \lim _{x \rightarrow 0^{+}} \tan x \\
& =-(1)(0)=0
\end{aligned}
$$

Thus,

Rewriting last expression

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(-\frac{\sin x}{x} \tan x\right) & =-\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \lim _{x \rightarrow 0^{+}} \tan x \\
& =-(1)(0)=0
\end{aligned}
$$

Thus,

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\csc (x)}=0
$$

The limit of an expression that has one of the forms

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually

 exert conflictina influences on the limit of the entire expression.The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually

 exert conflicting influences on the limit of the entire expression.The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually exert conflicting influences on the limit of the entire expression.

The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually exert conflicting influences on the limit of the entire expression.

- Indeterminate form of type $0 \cdot \infty$

The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually exert conflicting influences on the limit of the entire expression.

- Indeterminate form of type $0 \cdot \infty$

For example

The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually exert conflicting influences on the limit of the entire expression.

- Indeterminate form of type $0 \cdot \infty$

For example
$\lim _{x \rightarrow 0^{+}} x \ln (x)=0 \cdot \infty$ Indeterminate form

The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually exert conflicting influences on the limit of the entire expression.

- Indeterminate form of type $0 \cdot \infty$

For example
$\lim _{x \rightarrow 0^{+}} x \ln (x)=0 \cdot \infty$ Indeterminate form
On the other hand

The limit of an expression that has one of the forms

$$
\frac{f(x)}{g(x)}, f(x) \cdot g(x), f(x)^{g(x)}, f(x)-g(x), f(x)+g(x)
$$

is called and indeterminate form if the limits $f(x)$ and $g(x)$ individually exert conflicting influences on the limit of the entire expression.

- Indeterminate form of type $0 \cdot \infty$

For example
$\lim _{x \rightarrow 0^{+}} x \ln (x)=0 \cdot \infty$ Indeterminate form
On the other hand
$\lim _{x \rightarrow+\infty} \sqrt{x}\left(1-x^{2}\right)=+\infty(-\infty)=-\infty$ Not an indeterminate form

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.

E.g. Evaluate

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.

E.g. Evaluate

(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.

E.g. Evaluate

(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(2) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)$

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.

E.g. Evaluate

(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(2) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)$

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.

E.g. Evaluate

(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(2) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)$
(1)

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.

E.g. Evaluate

(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(2) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)$

Sol:
(1)

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=0 \cdot(-\infty)
$$

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.

E.g. Evaluate

(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(2) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)$

Sol:
(1)

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=0 \cdot(-\infty)
$$

Rewriting

Indeterminate form of type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a ratio, and then applying L'Hôpital's rule for indeterminate form of type $0 / 0$ or ∞ / ∞.

E.g. Evaluate

(1) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(2) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)$

Sol:
(1)

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=0 \cdot(-\infty)
$$

Rewriting

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}} \quad(\infty / \infty) \text { form }
$$

Applying L'Hôpital's rule

Applying L'Hôpital's rule

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}\left(\frac{1}{x}\right)}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}\left(\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}\left(\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x}
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}\left(\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x} \\
& =\lim _{x \rightarrow 0^{+}}(-x)
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln (x))}{\frac{d}{d x}\left(\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x} \\
& =\lim _{x \rightarrow 0^{+}}(-x) \\
& =0
\end{aligned}
$$

(2)

Rewriting
(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}}
$$

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x) & =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}} \\
& =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=0 / 0 \text { form }
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x) & =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}} \\
& =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=0 / 0 \text { form }
\end{aligned}
$$

Applying L'Hôpital's rule

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x) & =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}} \\
& =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=0 / 0 \text { form }
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=\lim _{x \rightarrow \pi / 4} \frac{\frac{d}{d x}(1-\tan x)}{\frac{d}{d x}(\cos 2 x)}
$$

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x) & =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}} \\
& =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=0 / 0 \text { form }
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x} & =\lim _{x \rightarrow \pi / 4} \frac{\frac{d}{d x}(1-\tan x)}{\frac{d}{d x}(\cos 2 x)} \\
& =\lim _{x \rightarrow \pi / 4} \frac{-\sec ^{2} x}{-2 \sin 2 x}
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x) & =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}} \\
& =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=0 / 0 \text { form }
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x} & =\lim _{x \rightarrow \pi / 4} \frac{\frac{d}{d x}(1-\tan x)}{\frac{d}{d x}(\cos 2 x)} \\
& =\lim _{x \rightarrow \pi / 4} \frac{-\sec ^{2} x}{-2 \sin 2 x} \\
& =\frac{\left(\sec \frac{\pi}{4}\right)^{2}}{2 \sin \left(\frac{2 \pi}{4}\right)}=\frac{2}{2}=1
\end{aligned}
$$

(2)

$$
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=0 \cdot \infty
$$

Rewriting

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x) & =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\frac{1}{\sec 2 x}} \\
& =\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x}=0 / 0 \text { form }
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)=\lim _{x \rightarrow \pi / 4} \frac{1-\tan x}{\cos 2 x} & =\lim _{x \rightarrow \pi / 4} \frac{\frac{d}{d x}(1-\tan x)}{\frac{d}{d x}(\cos 2 x)} \\
& =\lim _{x \rightarrow \pi / 4} \frac{-\sec ^{2} x}{-2 \sin 2 x} \\
& =\frac{\left(\sec \frac{\pi}{4}\right)^{2}}{2 \sin \left(\frac{2 \pi}{4}\right)}=\frac{2}{2}=1
\end{aligned}
$$

- Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions

- Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions

- Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$

- Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$

- Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$

- Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(+\infty)$

- Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(+\infty)$
is called an indeterminate form type $\infty-\infty$

- Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(+\infty)$
is called an indeterminate form type $\infty-\infty$
The limit problems that lead to one of the expressions

- Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(+\infty)$
is called an indeterminate form type $\infty-\infty$
The limit problems that lead to one of the expressions
(1) $(+\infty)+(+\infty)$

- Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(+\infty)$
is called an indeterminate form type $\infty-\infty$
The limit problems that lead to one of the expressions
(1) $(+\infty)+(+\infty)$
(2) $(+\infty)-(-\infty)$

- Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(+\infty)$
is called an indeterminate form type $\infty-\infty$
The limit problems that lead to one of the expressions
(1) $(+\infty)+(+\infty)$
(2) $(+\infty)-(-\infty)$
(3) $(-\infty)+(-\infty)$

- Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(+\infty)$
is called an indeterminate form type $\infty-\infty$
The limit problems that lead to one of the expressions
(1) $(+\infty)+(+\infty)$
(2) $(+\infty)-(-\infty)$
(3) $(-\infty)+(-\infty)$
(4) $(-\infty)-(+\infty)$

- Indeterminate form of type $\infty-\infty$

A limit problem that leads to one of the expressions
(1) $(+\infty)-(+\infty)$
(2) $(-\infty)-(-\infty)$
(3) $(+\infty)+(-\infty)$
(4) $(-\infty)+(+\infty)$
is called an indeterminate form type $\infty-\infty$
The limit problems that lead to one of the expressions
(1) $(+\infty)+(+\infty)$
(2) $(+\infty)-(-\infty)$
(3) $(-\infty)+(-\infty)$
(4) $(-\infty)-(+\infty)$
are not indeterminate, since two terms work together.

E.g. Evaluate

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)
$$

E.g. Evaluate

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)
$$

Sol:

E.g. Evaluate

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)
$$

Sol:

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)=\left(\frac{1}{0}-\frac{1}{\sin 0}\right)=\infty-\infty \text { form }
$$

E.g. Evaluate

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)
$$

Sol:

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)=\left(\frac{1}{0}-\frac{1}{\sin 0}\right)=\infty-\infty \text { form }
$$

Rewriting

E.g. Evaluate

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)
$$

Sol:

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)=\left(\frac{1}{0}-\frac{1}{\sin 0}\right)=\infty-\infty \text { form }
$$

Rewriting

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)=\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x-x}{x \sin x}\right)=\left(\frac{\sin 0-0}{0 \sin 0}\right)=0 / 0 \text { form }
$$

Applying L'Hôpital's rule

Applying L'Hôpital's rule

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)=\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x-x}{x \sin x}\right)
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x-x}{x \sin x}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\sin x-x)}{\frac{d}{d x}(x \sin x)}\right)
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x-x}{x \sin x}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\sin x-x)}{\frac{d}{d x}(x \sin x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\cos x-1}{\sin x+x \cos x}\right)
\end{aligned}
$$

Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x-x}{x \sin x}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\sin x-x)}{\frac{d}{d x}(x \sin x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\cos x-1}{\sin x+x \cos x}\right) \\
& =0 / 0 \text { form }
\end{aligned}
$$

Again Applying L'Hôpital's rule

Again Applying L'Hôpital's rule

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)=\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\cos x-1)}{\frac{d}{d x}(\sin x+x \cos x)}\right)
$$

Again Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\cos x-1)}{\frac{d}{d x}(\sin x+x \cos x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{-\sin x}{\cos x-x \sin x+\cos x}\right)
\end{aligned}
$$

Again Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\cos x-1)}{\frac{d}{d x}(\sin x+x \cos x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{-\sin x}{\cos x-x \sin x+\cos x}\right) \\
& =\frac{-\sin 0}{\cos 0-0 \sin 0+\cos 0}
\end{aligned}
$$

Again Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\cos x-1)}{\frac{d}{d x}(\sin x+x \cos x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{-\sin x}{\cos x-x \sin x+\cos x}\right) \\
& =\frac{-\sin 0}{\cos 0-0 \sin 0+\cos 0} \\
& =\frac{0}{1-0+1}
\end{aligned}
$$

Again Applying L'Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\frac{d}{d x}(\cos x-1)}{\frac{d}{d x}(\sin x+x \cos x)}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{-\sin x}{\cos x-x \sin x+\cos x}\right) \\
& =\frac{-\sin 0}{\cos 0-0 \sin 0+\cos 0} \\
& =\frac{0}{1-0+1} \\
& =0
\end{aligned}
$$

- Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

- Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞}
\qquad and ∞ respectively. Two conflicting influences. Such inderminate form can be evaluated by first introducing a dependent variable

- Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞} E.g.
pause It is indeterminate because the expressions $1+x$ and $\frac{1}{x}$ gives 1 and ∞ respectively. Two conflicting influences. Such inderminate form can be evaluated by first introducing a dependent variable

- Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞} E.g.

$$
\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}} \quad\left(1^{\infty}\right) \text { form }
$$

pause It is indeterminate because the expressions $1+x$ and $\frac{1}{x}$ gives 1 and ∞ respectively. Two conflicting influences. Such inderminate form can be evaluated by first introducing a dependent variable

- Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞} E.g.

$$
\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}} \quad\left(1^{\infty}\right) \text { form }
$$

pause It is indeterminate because the expressions $1+x$ and $\frac{1}{x}$ gives 1 and ∞ respectively. Two conflicting influences. Such inderminate form can be evaluated by first introducing a dependent variable

$$
y=f(x)^{g(x)}
$$

- Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞} E.g.

$$
\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}} \quad\left(1^{\infty}\right) \text { form }
$$

pause It is indeterminate because the expressions $1+x$ and $\frac{1}{x}$ gives 1 and ∞ respectively. Two conflicting influences. Such inderminate form can be evaluated by first introducing a dependent variable

$$
\begin{aligned}
y & =f(x)^{g(x)} \\
\ln (y) & =\ln \left(f(x)^{g(x)}\right)
\end{aligned}
$$

- Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞} E.g.

$$
\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}} \quad\left(1^{\infty}\right) \text { form }
$$

pause It is indeterminate because the expressions $1+x$ and $\frac{1}{x}$ gives 1 and ∞ respectively. Two conflicting influences. Such inderminate form can be evaluated by first introducing a dependent variable

$$
\begin{aligned}
y & =f(x)^{g(x)} \\
\ln (y) & =\ln \left(f(x)^{g(x)}\right) \\
& =g(x) \cdot \ln (f(x))
\end{aligned}
$$

- Indeterminate forms of type $0^{0}, \infty^{0}, 1^{\infty}$

Limits of the form

$$
\lim f(x) g^{(x)}
$$

can give rise to indeterminate forms of the types $0^{0}, \infty^{0}$ and 1^{∞} E.g.

$$
\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}} \quad\left(1^{\infty}\right) \text { form }
$$

pause It is indeterminate because the expressions $1+x$ and $\frac{1}{x}$ gives 1 and ∞ respectively. Two conflicting influences. Such inderminate form can be evaluated by first introducing a dependent variable

$$
\begin{aligned}
y & =f(x)^{g(x)} \\
\ln (y) & =\ln \left(f(x)^{g(x)}\right) \\
& =g(x) \cdot \ln (f(x))
\end{aligned}
$$

The limit of $\ln (y)$ will be an indeterminate form of type $0: \infty$

E.g.

E.g.

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e \quad \text { Note }: a^{x}=e^{x} \ln (a)
$$

E.g.

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e \quad \text { Note }: a^{x}=e^{x} \ln (a)
$$

Sol: Let $y=(1+x)^{\frac{1}{x}}$
E.g.

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e \quad \text { Note }: a^{x}=e^{x} \ln (a)
$$

Sol: Let $y=(1+x)^{\frac{1}{x}}$

$$
\ln (y)=\ln (1+x)^{\frac{1}{x}} \Rightarrow \ln (y)=\frac{1}{x} \ln (1+x)
$$

E.g.

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e \quad \text { Note }: a^{x}=e^{x} \ln (a)
$$

Sol: Let $y=(1+x)^{\frac{1}{x}}$

$$
\begin{gathered}
\ln (y)=\ln (1+x)^{\frac{1}{x}} \Rightarrow \ln (y)=\frac{1}{x} \ln (1+x) \\
\lim _{x \rightarrow 0} \ln y=\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\frac{\ln (1+0)}{0}(0 / 0 \text { form })
\end{gathered}
$$

Applying L'Hôpital's rule,

$$
\lim _{x \rightarrow 0} \ln y=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1}
$$

Applying L'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \operatorname{In} y & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x}=1
\end{aligned}
$$

Applying L'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x}=1 \\
\ln (y) \rightarrow 1 \text { as } x \rightarrow 0 &
\end{aligned}
$$

Applying L'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x}=1 \\
\ln (y) \rightarrow 1 \text { as } x \rightarrow 0 & \\
\Rightarrow e^{\ln (y)} \rightarrow e^{1} \text { as } x \rightarrow 0 &
\end{aligned}
$$

Applying L'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x}=1 \\
\ln (y) \rightarrow 1 \text { as } x \rightarrow 0 & \\
\Rightarrow e^{\ln (y)} \rightarrow e^{1} \text { as } x \rightarrow 0 & \\
\Rightarrow y \rightarrow e \text { as } x \rightarrow 0 &
\end{aligned}
$$

Applying L'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x}=1 \\
\ln (y) \rightarrow 1 \text { as } x \rightarrow 0 & \\
\Rightarrow e^{\ln (y)} \rightarrow e^{1} \text { as } x \rightarrow 0 & \\
\Rightarrow y \rightarrow e \text { as } x \rightarrow 0 &
\end{aligned}
$$

Thus

Applying L'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+x}=1 \\
\ln (y) \rightarrow 1 \text { as } x \rightarrow 0 & \\
\Rightarrow e^{\ln (y)} \rightarrow e^{1} \text { as } x \rightarrow 0 & \\
\Rightarrow y \rightarrow e \text { as } x \rightarrow 0 &
\end{aligned}
$$

Thus

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e
$$

End!

