## On the domination number of Hamiltonian graphs with minimum degree six

(Hua-Ming Xing, Johannes H. Hattingh, and Andrew R. Plummer, 2007)

Presented by Dr. G.H.J. Lanel

April 28, 2016

## Outline

(1) Introduction

- Definitions
- History of domination in graphs
- Problem statement
(2) Main Results
- Definitions
- Preliminary results
- Main Theorem
- Proof of main Theorem


## Outline

(1) Introduction

- Definitions
- History of domination in graphs
- Problem statement
(2) Main Results
- Definitions
- Preliminary results
- Main Theorem
- Proof of main Theorem


## Dominating set and domination number

Definition

- Throughout let $G=(V, E)$ be a simple graph with vertex set $V$ and edge set $E$.

A set $S \subseteq V$ is a dominating set if every vertex not in $S$ has a neighbor in $S$

- The domination number $\gamma(G)$, is the minimum size of a dominating set in $G$.


## Dominating set and domination number

Definition

- Throughout let $G=(V, E)$ be a simple graph with vertex set $V$ and edge set $E$.
- A set $S \subseteq V$ is a dominating set if every vertex not in $S$ has a neighbor in $S$.
- The domination number $\gamma(G)$, is the minimum size of a
$\square$


## Dominating set and domination number

Definition

- Throughout let $G=(V, E)$ be a simple graph with vertex set $V$ and edge set $E$.
- A set $S \subseteq V$ is a dominating set if every vertex not in $S$ has a neighbor in $S$.
- The domination number $\gamma(G)$, is the minimum size of a dominating set in $G$.


## Example



## Example


$\{3,7,8\}$ is a minimum dominating set (i.e., $\gamma(G)=3$ ).

## Order and minimum degree

## Definition

- The order of $G$. written $n$, is the number of vertices in $G$.
- The minimum degree of $G$, denoted by $\delta(G)$, is the minimum cardinality of degree of a vertex in $G$.


## Order and minimum degree

Definition

- The order of $G$. written $n$, is the number of vertices in $G$.
- The minimum degree of $G$, denoted by $\delta(G)$, is the minimum cardinality of degree of a vertex in $G$.


## History

- O. Ore (1962) showed that if $G$ is a graph of order $n$ with $\delta(G) \geq 1$, then $\gamma(G) \leq \frac{n}{2}$.


## - W. McCuaig and B. Shepherd (1989) showed that if $G$ is a connected graph with $\delta(G) \geq 2$ and not one of the seven exceptional graphs, then $\gamma(G) \leq \frac{2 n}{5}$

## - B. Reed (1996) showed that if $\delta(G) \geq 3$, then $\gamma(G) \leq \frac{3 n}{8}$

## History

- O. Ore (1962) showed that if $G$ is a graph of order $n$ with $\delta(G) \geq 1$, then $\gamma(G) \leq \frac{n}{2}$.
- W. McCuaig and B. Shepherd (1989) showed that if $G$ is a connected graph with $\delta(G) \geq 2$ and not one of the seven exceptional graphs, then $\gamma(G) \leq \frac{2 n}{5}$.


## History

- O. Ore (1962) showed that if $G$ is a graph of order $n$ with $\delta(G) \geq 1$, then $\gamma(G) \leq \frac{n}{2}$.
- W. McCuaig and B. Shepherd (1989) showed that if $G$ is a connected graph with $\delta(G) \geq 2$ and not one of the seven exceptional graphs, then $\gamma(G) \leq \frac{2 n}{5}$.
- B. Reed (1996) showed that if $\delta(G) \geq 3$, then $\gamma(G) \leq \frac{3 n}{8}$.


## History



## History

## Conjecture (T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, 1997)

Let $G$ be a graph of order $n$ such that $\delta(G) \geq k \geq 4$. Then $\gamma(G) \leq \frac{k n}{3 k-1}$.


## History

## Conjecture (T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, 1997)

Let $G$ be a graph of order $n$ such that $\delta(G) \geq k \geq 4$. Then $\gamma(G) \leq \frac{k n}{3 k-1}$.

## Proposition

Let $G$ be a graph of order $n$ such that $\delta(G) \geq k \geq 7$. Then $\gamma(G) \leq \frac{k n}{3 k-1}$.

## Problem

- M.Y. Sohn and X. Yuan proved that Conjecture is true for graphs with minimum degree $\delta(G)=4$.
H. Xing, L. Sun, and X. Chen (2006) proved that Conjecture holds for graphs with $\delta(G)=5$.
- The conjecture is open only for the graphs with $\delta(G)=6$.


## Problem

- M.Y. Sohn and X. Yuan proved that Conjecture is true for graphs with minimum degree $\delta(G)=4$.
- H. Xing, L. Sun, and X. Chen (2006) proved that Conjecture holds for graphs with $\delta(G)=5$.
- The conjecture is open only for the graphs with $\delta(G)=6$. In this paper the Conjecture has proved for Hamiltonian graphs with $\delta(G)=6$


## Problem

- M.Y. Sohn and X. Yuan proved that Conjecture is true for graphs with minimum degree $\delta(G)=4$.
- H. Xing, L. Sun, and X. Chen (2006) proved that Conjecture holds for graphs with $\delta(G)=5$.
- The conjecture is open only for the graphs with $\delta(G)=6$.


## Problem

- M.Y. Sohn and X. Yuan proved that Conjecture is true for graphs with minimum degree $\delta(G)=4$.
- H. Xing, L. Sun, and X. Chen (2006) proved that Conjecture holds for graphs with $\delta(G)=5$.
- The conjecture is open only for the graphs with $\delta(G)=6$.
- In this paper the Conjecture has proved for Hamiltonian graphs with $\delta(G)=6$.


## Outline

(1) Introduction

- Definitions
- History of domination in graphs
- Problem statement
(2) Main Results
- Definitions
- Preliminary results
- Main Theorem
- Proof of main Theorem


## Hamiltonian cycle and Hamiltonian graph

- A cycle containing every vertex of the graph is called a Hamiltonian cycle.
- A Hamiltonian graph is a graph possessing a Hamiltonian cycle. - A chord of a cycle $C$ is an edge not in $C$ whose endpoints lie in $C$.


## Hamiltonian cycle and Hamiltonian graph

- A cycle containing every vertex of the graph is called a Hamiltonian cycle.
- A Hamiltonian graph is a graph possessing a Hamiltonian cycle.


## Hamiltonian cycle and Hamiltonian graph

- A cycle containing every vertex of the graph is called a Hamiltonian cycle.
- A Hamiltonian graph is a graph possessing a Hamiltonian cycle.
- A chord of a cycle $C$ is an edge not in $C$ whose endpoints lie in $C$.


## A cowboy with a lasso



02007 - TheColoringSpot.cort - All rights reserved

## Lasso of a graph

- Let $C$ be a cycle and $P$ be a path of $G$ with $V(C) \cap V(P)=\emptyset$.



## Lasso of a graph

- Let $C$ be a cycle and $P$ be a path of $G$ with $V(C) \cap V(P)=\emptyset$.
- Let $v \in V(C)$ and $x$ end vertex of $P$. Let $V^{\prime}=V(C) \cup V(P)$ and $E^{\prime}=E(C) \cup E(P) \cup\{v x\}$.
- The graph $L=\left(V^{\prime}, E^{\prime}\right)$ is called a lasso and the cycle $C$ is called


## Lasso of a graph

- Let $C$ be a cycle and $P$ be a path of $G$ with $V(C) \cap V(P)=\emptyset$.
- Let $v \in V(C)$ and $x$ end vertex of $P$. Let $V^{\prime}=V(C) \cup V(P)$ and $E^{\prime}=E(C) \cup E(P) \cup\{v x\}$.
- The graph $L=\left(V^{\prime}, E^{\prime}\right)$ is called a lasso and the cycle $C$ is called the body of $L$.


## Example



## Lasso of a graph



## Lasso of a graph



## Lasso of a graph



## Lemma (*)

For $k \geq 1$, let $P=x_{1}, x_{2}, \ldots, x_{3 k+1}$ be a path of order $3 k+1$. If $x_{1}$ is adjacent to a vertex $x_{3 i}$ for some $1 \leq i \leq k$, then $P$ can be dominated by $k$ vertices.

## Lemma (*)

For $k \geq 1$, let $P=x_{1}, x_{2}, \ldots, x_{3 k+1}$ be a path of order $3 k+1$. If $x_{1}$ is adjacent to a vertex $x_{3 i}$ for some $1 \leq i \leq k$, then $P$ can be dominated by k vertices.

## Proof

The set $D=\left\{x_{3}, x_{6}, \ldots, x_{3 k}\right\}$ is a dominating set of $P$ such that $|D|=k$.

## Lemma ( (丸*)

For $k \geq 1$, let $C$ be a cycle of order $3 k+1$ and $P=x_{1}, x_{2}, x_{3}$ be a path such that $V(C) \cap V(P)=\emptyset$. If $x_{2}$ has a neighbor on $C$, then $C \cup P$ can be dominated by $k+1$ vertices.

## Lemma ( (丸*)

For $k \geq 1$, let $C$ be a cycle of order $3 k+1$ and $P=x_{1}, x_{2}, x_{3}$ be a path such that $V(C) \cap V(P)=\emptyset$. If $x_{2}$ has a neighbor on $C$, then $C \cup P$ can be dominated by $k+1$ vertices.

## Proof

Let $C=y_{1}, y_{2}, \ldots, y_{3 k+1}$ and WLOG assume $x_{2}$ is adjacent to $y_{1}$. Then $D=\left\{x_{2}, y_{3}, y_{6}, \ldots, y_{3 k}\right\}$ is a dominating set of $C \cup P$ such that $|D|=k+1$.

## Lemma (W.E. Clark and L.A. Dunning, 1997)

Let $G$ be a graph of order $n$ with $\delta(G) \geq 4$. If $n \leq 16$, then $\gamma(G) \leq \frac{n}{3}$.

Lemma (W.E. Clark and L.A. Dunning, 1997)
Let $G$ be a graph of order $n$ with $\delta(G) \geq 4$. If $n \leq 16$, then $\gamma(G) \leq \frac{n}{3}$.

Lemma (Xing, Sun, and Chen, 2006)
Let $G$ be a graph of order $3 m+1$, where $2 \leq m \leq 8$. If $\delta(G) \geq 5$, then $\gamma(G) \leq m$.

Theorem

Let $G$ be a Hamiltonian graph of order $n$ such that $\delta(G) \geq 6$. Then $\gamma(G) \leq \frac{6 n}{17}$.

Theorem

Let $G$ be a Hamiltonian graph of order $n$ such that $\delta(G) \geq 6$. Then $\gamma(G) \leq \frac{6 n}{17}$.

Proof

- Let $V(G)=\{1,2, \ldots, n\}$ and WLOG assume $C=1,2, \ldots, n, 1$ is a Hamiltonian cycle of $G$.

Theorem

Let $G$ be a Hamiltonian graph of order $n$ such that $\delta(G) \geq 6$. Then $\gamma(G) \leq \frac{6 n}{17}$.

Proof

- Let $V(G)=\{1,2, \ldots, n\}$ and $W L O G$ assume $C=1,2, \ldots, n, 1$ is a Hamiltonian cycle of $G$.
- If $n \leq 16$, then by Lemma (Clark and Dunning), $\gamma(G) \leq \frac{n}{3} \leq \frac{6 n}{17}$. Thus, $n \geq 17$.

Theorem

Let $G$ be a Hamiltonian graph of order $n$ such that $\delta(G) \geq 6$. Then $\gamma(G) \leq \frac{6 n}{17}$.

Proof

- Let $V(G)=\{1,2, \ldots, n\}$ and $W L O G$ assume $C=1,2, \ldots, n, 1$ is a Hamiltonian cycle of $G$.
- If $n \leq 16$, then by Lemma (Clark and Dunning), $\gamma(G) \leq \frac{n}{3} \leq \frac{6 n}{17}$. Thus, $n \geq 17$.
- Let $m \geq 6$, then there are 3 cases to be considered.


## Case <br> $n=3 m-1$.

## Case

$$
n=3 m-1
$$

- The $D=\{2,5, \ldots, 3 m-1\}$ is a dominating set of $G$ such that $|D|=m=\frac{n+1}{3}$.
- Since $n \geq 17$, it follows that $\gamma(G) \leq \frac{n+1}{3} \leq \frac{6 n}{17}$.


## Case

$$
n=3 m-1
$$

- The $D=\{2,5, \ldots, 3 m-1\}$ is a dominating set of $G$ such that $|D|=m=\frac{n+1}{3}$.
- Since $n \geq 17$, it follows that $\gamma(G) \leq \frac{n+1}{3} \leq \frac{6 n}{17}$.


## Case

$$
n=3 m-1
$$

- The $D=\{2,5, \ldots, 3 m-1\}$ is a dominating set of $G$ such that $|D|=m=\frac{n+1}{3}$.
- Since $n \geq 17$, it follows that $\gamma(G) \leq \frac{n+1}{3} \leq \frac{6 n}{17}$.


## Case

$$
n=3 m-1
$$

- The $D=\{2,5, \ldots, 3 m-1\}$ is a dominating set of $G$ such that $|D|=m=\frac{n+1}{3}$.
- Since $n \geq 17$, it follows that $\gamma(G) \leq \frac{n+1}{3} \leq \frac{6 n}{17}$.


## Case

$n=3 m$.

## Case

$n=3 m-1$.

- The $D=\{2,5, \ldots, 3 m-1\}$ is a dominating set of $G$ such that $|D|=m=\frac{n+1}{3}$.
- Since $n \geq 17$, it follows that $\gamma(G) \leq \frac{n+1}{3} \leq \frac{6 n}{17}$.

Case
$n=3 m$.

- The $D=\{2,5, \ldots, 3 m-1\}$ is a dominating set of $G$ such that $|D|=m=\frac{n}{3}$.


## Case

$n=3 m-1$.

- The $D=\{2,5, \ldots, 3 m-1\}$ is a dominating set of $G$ such that $|D|=m=\frac{n+1}{3}$.
- Since $n \geq 17$, it follows that $\gamma(G) \leq \frac{n+1}{3} \leq \frac{6 n}{17}$.

Case
$n=3 m$.

- The $D=\{2,5, \ldots, 3 m-1\}$ is a dominating set of $G$ such that $|D|=m=\frac{n}{3}$.
- Since $n \geq 17$, it follows that $\gamma(G) \leq \frac{n}{3} \leq \frac{6 n}{17}$.


## Case

$n=3 m+1$.

## Case

$n=3 m+1$.

- If $m \leq 8$, then $n \leq 25$, and by Lemma (Xing, Sun, and Chen), $\gamma(G) \leq m \leq \frac{6 n}{17}$. dominating set of $G$ such that $|D|=m+1=\frac{n+2}{3}$. It follows that

- Hence, it remains to show that for $m=9(n=28)$ or $m=10(n=31)$.


## Case

$n=3 m+1$.

- If $m \leq 8$, then $n \leq 25$, and by Lemma (Xing, Sun, and Chen), $\gamma(G) \leq m \leq \frac{6 n}{17}$.
- If $m \geq 11$, then $n \geq 34$, and $D=\{2,5, \ldots, 3 m+1\}$ is a dominating set of $G$ such that $|D|=m+1=\frac{n+2}{3}$. It follows that $\gamma(G) \leq \frac{n+2}{3} \leq \frac{6 n}{17}$.
- Since the proof are similar we consider only $n=31$.


## Case

$n=3 m+1$.

- If $m \leq 8$, then $n \leq 25$, and by Lemma (Xing, Sun, and Chen), $\gamma(G) \leq m \leq \frac{6 n}{17}$.
- If $m \geq 11$, then $n \geq 34$, and $D=\{2,5, \ldots, 3 m+1\}$ is a dominating set of $G$ such that $|D|=m+1=\frac{n+2}{3}$. It follows that $\gamma(G) \leq \frac{n+2}{3} \leq \frac{6 n}{17}$.
- Hence, it remains to show that for $m=9(n=28)$ or $m=10(n=31)$.


## Case

$n=3 m+1$.

- If $m \leq 8$, then $n \leq 25$, and by Lemma (Xing, Sun, and Chen), $\gamma(G) \leq m \leq \frac{6 n}{17}$.
- If $m \geq 11$, then $n \geq 34$, and $D=\{2,5, \ldots, 3 m+1\}$ is a dominating set of $G$ such that $|D|=m+1=\frac{n+2}{3}$. It follows that $\gamma(G) \leq \frac{n+2}{3} \leq \frac{6 n}{17}$.
- Hence, it remains to show that for $m=9(n=28)$ or $m=10(n=31)$.
- Since the proof are similar we consider only $n=31$.
- The proof by contradiction (i.e., $\gamma(G) \geq 11$ ).


## We choose a lasso $L$ of order 31, such that body of $L$ is maximum. For an example,

- The proof by contradiction (i.e., $\gamma(G) \geq 11$ ).
- We choose a lasso $L$ of order 31, such that body of $L$ is maximum. For an example,
- The proof by contradiction (i.e., $\gamma(G) \geq 11$ ).
- We choose a lasso $L$ of order 31, such that body of $L$ is maximum. For an example,

- The proof by contradiction (i.e., $\gamma(G) \geq 11$ ).
- We choose a lasso $L$ of order 31, such that body of $L$ is maximum. For an example,

- Let $v \in V(G)$. WLOG assume that $1 v$ is a chord of $C$ and $1, v, v-1, \ldots, 1$ is the body of $L$.

- Let $v \in V(G)$. WLOG assume that $1 v$ is a chord of $C$ and $1, v, v-1, \ldots, 1$ is the body of $L$.
- Consider possible values for v. By Lemma( $\star$ ), we may assume that 1 is not adjacent to $3 i$ for all $i$. Similarly 31 is not adjacent to $3 i-1$ for all $i$.
- Let $v \in V(G)$. WLOG assume that $1 v$ is a chord of $C$ and $1, v, v-1, \ldots, 1$ is the body of $L$.
- Consider possible values for $v$. By Lemma( $($ ), we may assume that 1 is not adjacent to $3 i$ for all $i$. Similarly 31 is not adjacent to $3 i-1$ for all $i$.
- Since the body of $L$ is maximum, and by relabeling if necessary, we have that $v \geq 17$. So, $v \in\{17,19,20,22,23,25,26,28,29\}$.
- We know that 31 is adjacent to 1 and 30 . Similarly 30 is adjacent to 31 and 29.
- We know that 31 is adjacent to 1 and 30 . Similarly 30 is adjacent to 31 and 29.
- Suppose $b$ is adjacent to 31 . Then we obtain lassos $L_{1}$ and $L_{2}$ with cycle lengths $b+1$ and $32-b$.
- We know that 31 is adjacent to 1 and 30 . Similarly 30 is adjacent to 31 and 29.
- Suppose $b$ is adjacent to 31 . Then we obtain lassos $L_{1}$ and $L_{2}$ with cycle lengths $b+1$ and $32-b$.
- Thus $b+1 \leq v$ and $32-b \leq v \Rightarrow 32-v \leq b \leq v-1$.
- We know that 31 is adjacent to 1 and 30 . Similarly 30 is adjacent to 31 and 29.
- Suppose $b$ is adjacent to 31 . Then we obtain lassos $L_{1}$ and $L_{2}$ with cycle lengths $b+1$ and $32-b$.
- Thus $b+1 \leq v$ and $32-b \leq v \Rightarrow 32-v \leq b \leq v-1$.
- Similarly if $c$ is adjacent to 30 , then $31-v \leq c \leq v-2$.


## Case

$$
v=17 .
$$

## Case

$$
v=17 .
$$

- Consider the vertex 31 . We have that 31 is adjacent to vertices 1 and 30.


## Case

$v=17$.

- Consider the vertex 31. We have that 31 is adjacent to vertices 1 and 30.
- Since $32-17 \leq b \leq 17-1 \Rightarrow 15 \leq b \leq 16,31$ is possibly adjacent to vertices in $\{15,16,1,30\}$, a contradicting fact that $\operatorname{deg}(v) \geq 6$.


## Case

$v=17$.

- Consider the vertex 31 . We have that 31 is adjacent to vertices 1 and 30.
- Since $32-17 \leq b \leq 17-1 \Rightarrow 15 \leq b \leq 16,31$ is possibly adjacent to vertices in $\{15,16,1,30\}$, a contradicting fact that $\operatorname{deg}(v) \geq 6$.


## Case

$v=17$.

- Consider the vertex 31. We have that 31 is adjacent to vertices 1 and 30.
- Since $32-17 \leq b \leq 17-1 \Rightarrow 15 \leq b \leq 16,31$ is possibly adjacent to vertices in $\{15,16,1,30\}$, a contradicting fact that $\operatorname{deg}(v) \geq 6$.

Case
$v \in\{19,22,25,28\}$.

## Case

$v=17$.

- Consider the vertex 31 . We have that 31 is adjacent to vertices 1 and 30.
- Since $32-17 \leq b \leq 17-1 \Rightarrow 15 \leq b \leq 16,31$ is possibly adjacent to vertices in $\{15,16,1,30\}$, a contradicting fact that $\operatorname{deg}(v) \geq 6$.

Case
$v \in\{19,22,25,28\}$.
A contradiction by Lemma( $(\star)$.

## Case $v=20$.

## Case

$v=20$.

- Consider the vertex 31. We have that 31 is adjacent to 1,30 and possibly $12,13,15,16,18,19$.


## Case

$v=20$.

- Consider the vertex 31. We have that 31 is adjacent to 1,30 and possibly $12,13,15,16,18,19$.
- Since $\operatorname{deg}(31) \geq 6$, 31 must be adjacent to at least one of the vertices 12,15 , or 18 .


## Case

$$
v=20 .
$$

- Consider vertex 31. We have that 31 is adjacent to 1,30 and possibly $12,13,15,16,18,19$.
- Since $\operatorname{deg}(31) \geq 6,31$ must be adjacent to at least one of the vertices 12, 15, or 18.



## Case

$$
v=20 .
$$

- Consider vertex 31. We have that 31 is adjacent to 1,30 and possibly $12,13,15,16,18,19$.
- Since $\operatorname{deg}(31) \geq 6,31$ must be adjacent to at least one of the vertices 12,15 , or 18.



## Case

$$
v=20 .
$$

- Consider vertex 31. We have that 31 is adjacent to 1,30 and possibly $12,13,15,16,18,19$.
- Since $\operatorname{deg}(31) \geq 6,31$ must be adjacent to at least one of the vertices 12, 15, or 18.


Then $D=\{3,6,9,12,15,18,20,23,26,29\}$ is a dominating set with $|D|=10$, a contradiction.

## Case <br> $v=23$.

Similar to the case $v=20$.

## Case

$v=26$.
Similar to the case $v=20$.

Case
$v=29$.
Similar to the case $v=20$.

## Thank You!

